Download or read book Introductory Functional Analysis with Applications written by Erwin Kreyszig and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Download or read book Functional Analysis written by R.E. Edwards and published by Courier Corporation. This book was released on 2012-10-25 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.
Download or read book Functional Analysis Spectral Theory and Applications written by Manfred Einsiedler and published by Springer. This book was released on 2017-11-21 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Download or read book Lecture Notes on Functional Analysis written by Alberto Bressan and published by American Mathematical Soc.. This book was released on 2013 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.
Download or read book Functional Analysis written by Michel Willem and published by Springer Nature. This book was released on 2023-01-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the principles of functional analysis in a clear and concise way. The first three chapters describe the general notions of distance, integral, and norm, as well as their relations. Fundamental examples are provided in the three chapters that follow: Lebesgue spaces, dual spaces, and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szegő and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional analysis in relation to integration and differentiation. Starting from elementary analysis and introducing relevant research, this work is an excellent resource for students in mathematics and applied mathematics. The second edition of Functional Analysis includes several improvements as well as the addition of supplementary material. Specifically, the coverage of advanced calculus and distribution theory has been completely rewritten and expanded. New proofs, theorems, and applications have been added as well for readers to explore.
Download or read book Functional Analysis written by P. K. Jain and published by New Age International. This book was released on 1995 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Book Is Intended To Serve As A Textbook For An Introductory Course In Functional Analysis For The Senior Undergraduate And Graduate Students. It Can Also Be Useful For The Senior Students Of Applied Mathematics, Statistics, Operations Research, Engineering And Theoretical Physics. The Text Starts With A Chapter On Preliminaries Discussing Basic Concepts And Results Which Would Be Taken For Granted Later In The Book. This Is Followed By Chapters On Normed And Banach Spaces, Bounded Linear Operators, Bounded Linear Functionals. The Concept And Specific Geometry Of Hilbert Spaces, Functionals And Operators On Hilbert Spaces And Introduction To Spectral Theory. An Appendix Has Been Given On Schauder Bases.The Salient Features Of The Book Are: * Presentation Of The Subject In A Natural Way * Description Of The Concepts With Justification * Clear And Precise Exposition Avoiding Pendantry * Various Examples And Counter Examples * Graded Problems Throughout Each ChapterNotes And Remarks Within The Text Enhances The Utility Of The Book For The Students.
Download or read book Applied Algebra and Functional Analysis written by Anthony N. Michel and published by Courier Corporation. This book was released on 1993-01-01 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A valuable reference." — American Scientist. Excellent graduate-level treatment of set theory, algebra and analysis for applications in engineering and science. Fundamentals, algebraic structures, vector spaces and linear transformations, metric spaces, normed spaces and inner product spaces, linear operators, more. A generous number of exercises have been integrated into the text. 1981 edition.
Download or read book Applied Functional Analysis written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.
Download or read book Geometric Functional Analysis and its Applications written by R. B. Holmes and published by Springer. This book was released on 2012-12-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.
Download or read book Linear and Nonlinear Functional Analysis with Applications written by Philippe G. Ciarlet and published by SIAM. This book was released on 2013-10-10 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
Download or read book Functional Analysis written by Theo Bühler and published by American Mathematical Soc.. This book was released on 2018-08-08 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to the dual operator and to compact operators, and it establishes the closed image theorem. Chapter 5 deals with the spectral theory of bounded linear operators. It introduces complex Banach and Hilbert spaces, the continuous functional calculus for self-adjoint and normal operators, the Gelfand spectrum, spectral measures, cyclic vectors, and the spectral theorem. Chapter 6 introduces unbounded operators and their duals. It establishes the closed image theorem in this setting and extends the functional calculus and spectral measure to unbounded self-adjoint operators on Hilbert spaces. Chapter 7 gives an introduction to strongly continuous semigroups and their infinitesimal generators. It includes foundational results about the dual semigroup and analytic semigroups, an exposition of measurable functions with values in a Banach space, and a discussion of solutions to the inhomogeneous equation and their regularity properties. The appendix establishes the equivalence of the Lemma of Zorn and the Axiom of Choice, and it contains a proof of Tychonoff's theorem. With 10 to 20 elaborate exercises at the end of each chapter, this book can be used as a text for a one-or-two-semester course on functional analysis for beginning graduate students. Prerequisites are first-year analysis and linear algebra, as well as some foundational material from the second-year courses on point set topology, complex analysis in one variable, and measure and integration.
Download or read book Convergence Structures and Applications to Functional Analysis written by R. Beattie and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers a rigorous introduction into the theory and methods of convergence spaces and gives concrete applications to the problems of functional analysis. While there are a few books dealing with convergence spaces and a great many on functional analysis, there are none with this particular focus. The book demonstrates the applicability of convergence structures to functional analysis. Highlighted here is the role of continuous convergence, a convergence structure particularly appropriate to function spaces. It is shown to provide an excellent dual structure for both topological groups and topological vector spaces. Readers will find the text rich in examples. Of interest, as well, are the many filter and ultrafilter proofs which often provide a fresh perspective on a well-known result. Audience: This text will be of interest to researchers in functional analysis, analysis and topology as well as anyone already working with convergence spaces. It is appropriate for senior undergraduate or graduate level students with some background in analysis and topology.
Download or read book Functional Analysis written by Leonid P. Lebedev and published by Springer Science & Business Media. This book was released on 2006-04-29 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book started its life as a series of lectures given by the second author from the 1970’s onwards to students in their third and fourth years in the Department of Mechanics and Mathematics at Rostov State University. For these lectures there was also an audience of engineers and applied mechanicists who wished to understand the functional analysis used in contemporary research in their fields. These people were not so much interested in functional analysis itself as in its applications; they did not want to be told about functional analysis in its most abstract form, but wanted a guided tour through those parts of the analysis needed for their applications. The lecture notes evolved over the years as the first author started to make more formal typewritten versions incorporating new material. About 1990 the first author prepared an English version and submitted it to Kluwer Academic Publishers for inclusion in the series Solid Mechanics and its Applications. At that state the notes were divided into three long chapters covering linear and nonlinear analysis. As Series Editor, the third author started to edit them. The requirements of lecture notes and books are vastly different. A book has to be complete (in some sense), self contained, and able to be read without the help of an instructor.
Download or read book Functional Analysis and Applied Optimization in Banach Spaces written by Fabio Botelho and published by Springer. This book was released on 2014-06-12 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Download or read book Functional Analysis with Applications written by Svetlin G. Georgiev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-06-17 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book Applications of Mathematics written by A. V. Balakrishnan and published by Springer. This book was released on 1981-05-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: In preparing the second edition, I have taken advantage of the opportunity to correct errors as well as revise the presentation in many places. New material has been included, in addition, reflecting relevant recent work. The help of many colleagues (and especially Professor J. Stoer) in ferreting out errors is gratefully acknowledged. I also owe special thanks to Professor v. Sazonov for many discussions on the white noise theory in Chapter 6. February, 1981 A. V. BALAKRISHNAN v Preface to the First Edition The title "Applied Functional Analysis" is intended to be short for "Functional analysis in a Hilbert space and certain of its applications," the applications being drawn mostly from areas variously referred to as system optimization or control systems or systems analysis. One of the signs of the times is a discernible tilt toward application in mathematics and conversely a greater level of mathematical sophistication in the application areas such as economics or system science, both spurred undoubtedly by the heightening pace of digital computer usage. This book is an entry into this twilight zone. The aspects of functional analysis treated here are rapidly becoming essential in the training at the advance graduate level of system scientists and/or mathematical economists. There are of course now available many excellent treatises on functional analysis.