EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Frontiers in Massive Data Analysis

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Book Machine Learning for Big Data Analysis

Download or read book Machine Learning for Big Data Analysis written by Siddhartha Bhattacharyya and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.

Book Intelligent Data Analysis

Download or read book Intelligent Data Analysis written by Michael R. Berthold and published by Springer. This book was released on 2007-06-07 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Book Computational and Statistical Methods for Analysing Big Data with Applications

Download or read book Computational and Statistical Methods for Analysing Big Data with Applications written by Shen Liu and published by Academic Press. This book was released on 2015-11-20 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Book New Frontiers of Biostatistics and Bioinformatics

Download or read book New Frontiers of Biostatistics and Bioinformatics written by Yichuan Zhao and published by Springer. This book was released on 2018-12-05 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is comprised of presentations delivered at the 5th Workshop on Biostatistics and Bioinformatics held in Atlanta on May 5-7, 2017. Featuring twenty-two selected papers from the workshop, this book showcases the most current advances in the field, presenting new methods, theories, and case applications at the frontiers of biostatistics, bioinformatics, and interdisciplinary areas. Biostatistics and bioinformatics have been playing a key role in statistics and other scientific research fields in recent years. The goal of the 5th Workshop on Biostatistics and Bioinformatics was to stimulate research, foster interaction among researchers in field, and offer opportunities for learning and facilitating research collaborations in the era of big data. The resulting volume offers timely insights for researchers, students, and industry practitioners.

Book Statistical Analysis of Next Generation Sequencing Data

Download or read book Statistical Analysis of Next Generation Sequencing Data written by Somnath Datta and published by Springer. This book was released on 2016-09-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Book Big Data Analytics

    Book Details:
  • Author : Vasudha Bhatnagar
  • Publisher : Springer
  • Release : 2013-12-06
  • ISBN : 3319036890
  • Pages : 208 pages

Download or read book Big Data Analytics written by Vasudha Bhatnagar and published by Springer. This book was released on 2013-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed conference proceedings of the Second International Conference on Big Data Analytics, BDA 2013, held in Mysore, India, in December 2013. The 13 revised full papers were carefully reviewed and selected from 49 submissions and cover topics on mining social media data, perspectives on big data analysis, graph analysis, big data in practice.

Book Supercomputing Frontiers

Download or read book Supercomputing Frontiers written by Rio Yokota and published by Springer. This book was released on 2018-03-20 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.

Book Big Data Analytics

    Book Details:
  • Author : Saumyadipta Pyne
  • Publisher : Springer
  • Release : 2016-10-12
  • ISBN : 8132236289
  • Pages : 278 pages

Download or read book Big Data Analytics written by Saumyadipta Pyne and published by Springer. This book was released on 2016-10-12 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Book New Frontiers in High Performance Computing and Big Data

Download or read book New Frontiers in High Performance Computing and Big Data written by G. Fox and published by IOS Press. This book was released on 2017-11-14 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last four decades, parallel computing platforms have increasingly formed the basis for the development of high performance systems primarily aimed at the solution of intensive computing problems, and the application of parallel computing systems has also become a major factor in furthering scientific research. But such systems also offer the possibility of solving the problems encountered in the processing of large-scale scientific data sets, as well as in the analysis of Big Data in the fields of medicine, social media, marketing, economics etc. This book presents papers from the International Research Workshop on Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2016. The workshop covered a wide range of topics and new developments related to the solution of intensive and large-scale computing problems, and the contributions included in this volume cover aspects of the evolution of parallel platforms and highlight some of the problems encountered with the development of ever more powerful computing systems. The importance of future large-scale data science applications is also discussed. The book will be of particular interest to all those involved in the development or application of parallel computing systems.

Book Handbook of Research on Pattern Engineering System Development for Big Data Analytics

Download or read book Handbook of Research on Pattern Engineering System Development for Big Data Analytics written by Tiwari, Vivek and published by IGI Global. This book was released on 2018-04-20 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. The Handbook of Research on Pattern Engineering System Development for Big Data Analytics is a critical scholarly resource that examines the incorporation of pattern management in business technologies as well as decision making and prediction process through the use of data management and analysis. Featuring coverage on a broad range of topics such as business intelligence, feature extraction, and data collection, this publication is geared towards professionals, academicians, practitioners, and researchers seeking current research on the development of pattern management systems for business applications.

Book Big Data Meets Survey Science

Download or read book Big Data Meets Survey Science written by Craig A. Hill and published by John Wiley & Sons. This book was released on 2020-09-29 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a clear view of the utility and place for survey data within the broader Big Data ecosystem This book presents a collection of snapshots from two sides of the Big Data perspective. It assembles an array of tangible tools, methods, and approaches that illustrate how Big Data sources and methods are being used in the survey and social sciences to improve official statistics and estimates for human populations. It also provides examples of how survey data are being used to evaluate and improve the quality of insights derived from Big Data. Big Data Meets Survey Science: A Collection of Innovative Methods shows how survey data and Big Data are used together for the benefit of one or more sources of data, with numerous chapters providing consistent illustrations and examples of survey data enriching the evaluation of Big Data sources. Examples of how machine learning, data mining, and other data science techniques are inserted into virtually every stage of the survey lifecycle are presented. Topics covered include: Total Error Frameworks for Found Data; Performance and Sensitivities of Home Detection on Mobile Phone Data; Assessing Community Wellbeing Using Google Street View and Satellite Imagery; Using Surveys to Build and Assess RBS Religious Flag; and more. Presents groundbreaking survey methods being utilized today in the field of Big Data Explores how machine learning methods can be applied to the design, collection, and analysis of social science data Filled with examples and illustrations that show how survey data benefits Big Data evaluation Covers methods and applications used in combining Big Data with survey statistics Examines regulations as well as ethical and privacy issues Big Data Meets Survey Science: A Collection of Innovative Methods is an excellent book for both the survey and social science communities as they learn to capitalize on this new revolution. It will also appeal to the broader data and computer science communities looking for new areas of application for emerging methods and data sources.

Book Artificial Intelligence and Big Data Analytics for Smart Healthcare

Download or read book Artificial Intelligence and Big Data Analytics for Smart Healthcare written by Miltiadis Lytras and published by Elsevier. This book was released on 2021-10-22 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence and Big Data Analytics for Smart Healthcare serves as a key reference for practitioners and experts involved in healthcare as they strive to enhance the value added of healthcare and develop more sustainable healthcare systems. It brings together insights from emerging sophisticated information and communication technologies such as big data analytics, artificial intelligence, machine learning, data science, medical intelligence, and, by dwelling on their current and prospective applications, highlights managerial and policymaking challenges they may generate. The book is split into five sections: big data infrastructure, framework and design for smart healthcare; signal processing techniques for smart healthcare applications; business analytics (descriptive, diagnostic, predictive and prescriptive) for smart healthcare; emerging tools and techniques for smart healthcare; and challenges (security, privacy, and policy) in big data for smart healthcare. The content is carefully developed to be understandable to different members of healthcare chain to leverage collaborations with researchers and industry. Presents a holistic discussion on the new landscape of data driven medical technologies including Big Data, Analytics, Artificial Intelligence, Machine Learning, and Precision Medicine Discusses such technologies with case study driven approach with reference to real world application and systems, to make easier the understanding to the reader not familiar with them Encompasses an international collaboration perspective, providing understandable knowledge to professionals involved with healthcare to leverage productive partnerships with technology developers

Book Big Data in Materials Research and Development

Download or read book Big Data in Materials Research and Development written by National Research Council and published by National Academies Press. This book was released on 2014-10-22 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Materials Research and Development is the summary of a workshop convened by the National Research Council Standing Committee on Defense Materials Manufacturing and Infrastructure in February 2014 to discuss the impact of big data on materials and manufacturing. The materials science community would benefit from appropriate access to data and metadata for materials development, processing, application development, and application life cycles. Currently, that access does not appear to be sufficiently widespread, and many workshop participants captured the constraints and identified potential improvements to enable broader access to materials and manufacturing data and metadata. This report discusses issues in defense materials, manufacturing and infrastructure, including data ownership and access; collaboration and exploitation of big data's capabilities; and maintenance of data.

Book The Information Manifold

Download or read book The Information Manifold written by Antonio Badia and published by MIT Press. This book was released on 2019-11-05 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: An argument that information exists at different levels of analysis—syntactic, semantic, and pragmatic—and an exploration of the implications. Although this is the Information Age, there is no universal agreement about what information really is. Different disciplines view information differently; engineers, computer scientists, economists, linguists, and philosophers all take varying and apparently disconnected approaches. In this book, Antonio Badia distinguishes four levels of analysis brought to bear on information: syntactic, semantic, pragmatic, and network-based. Badia explains each of these theoretical approaches in turn, discussing, among other topics, theories of Claude Shannon and Andrey Kolomogorov, Fred Dretske's description of information flow, and ideas on receiver impact and informational interactions. Badia argues that all these theories describe the same phenomena from different perspectives, each one narrower than the previous one. The syntactic approach is the more general one, but it fails to specify when information is meaningful to an agent, which is the focus of the semantic and pragmatic approaches. The network-based approach, meanwhile, provides a framework to understand information use among agents. Badia then explores the consequences of understanding information as existing at several levels. Humans live at the semantic and pragmatic level (and at the network level as a society), computers at the syntactic level. This sheds light on some recent issues, including “fake news” (computers cannot tell whether a statement is true or not, because truth is a semantic notion) and “algorithmic bias” (a pragmatic, not syntactic concern). Humans, not computers, the book argues, have the ability to solve these issues.

Book Big Data Analysis  New Algorithms for a New Society

Download or read book Big Data Analysis New Algorithms for a New Society written by Nathalie Japkowicz and published by Springer. This book was released on 2015-12-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges.

Book Transactions on Large Scale Data  and Knowledge Centered Systems XLI

Download or read book Transactions on Large Scale Data and Knowledge Centered Systems XLI written by Abdelkader Hameurlain and published by Springer. This book was released on 2019-02-06 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the 41st issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains seven revised, extended papers selected from the 4th International Conference on Future Data and Security Engineering, FDSE 2017, which was held in Ho Chi Minh City, Vietnam, in November/December 2017. The main focus of this special issue is on data and security engineering, as well as engineering applications.