Download or read book Modern Software Tools for Scientific Computing written by A. Bruaset and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking back at the years that have passed since the realization of the very first electronic, multi-purpose computers, one observes a tremendous growth in hardware and software performance. Today, researchers and engi neers have access to computing power and software that can solve numerical problems which are not fully understood in terms of existing mathemati cal theory. Thus, computational sciences must in many respects be viewed as experimental disciplines. As a consequence, there is a demand for high quality, flexible software that allows, and even encourages, experimentation with alternative numerical strategies and mathematical models. Extensibil ity is then a key issue; the software must provide an efficient environment for incorporation of new methods and models that will be required in fu ture problem scenarios. The development of such kind of flexible software is a challenging and expensive task. One way to achieve these goals is to in vest much work in the design and implementation of generic software tools which can be used in a wide range of application fields. In order to provide a forum where researchers could present and discuss their contributions to the described development, an International Work shop on Modern Software Tools for Scientific Computing was arranged in Oslo, Norway, September 16-18, 1996. This workshop, informally referred to as Sci Tools '96, was a collaboration between SINTEF Applied Mathe matics and the Departments of Informatics and Mathematics at the Uni versity of Oslo.
Download or read book Finite Difference Methods in Financial Engineering written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Download or read book American Type Options written by Dmitrii S. Silvestrov and published by Walter de Gruyter. This book was released on 2013-11-27 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a systematical presentation of stochastic approximation methods for models of American-type options with general pay-off functions for discrete time Markov price processes. Advanced methods combining backward recurrence algorithms for computing of option rewards and general results on convergence of stochastic space skeleton and tree approximations for option rewards are applied to a variety of models of multivariate modulated Markov price processes. The principal novelty of presented results is based on consideration of multivariate modulated Markov price processes and general pay-off functions, which can depend not only on price but also an additional stochastic modulating index component, and use of minimal conditions of smoothness for transition probabilities and pay-off functions, compactness conditions for log-price processes and rate of growth conditions for pay-off functions. The book also contains an extended bibliography of works in the area. This book is the first volume of the comprehensive two volumes monograph. The second volume will present results on structural studies of optimal stopping domains, Monte Carlo based approximation reward algorithms, and convergence of American-type options for autoregressive and continuous time models, as well as results of the corresponding experimental studies.
Download or read book Computational Methods for Option Pricing written by Yves Achdou and published by SIAM. This book was released on 2005-01-01 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors review some important aspects of finance modeling involving partial differential equations and focus on numerical algorithms for the fast and accurate pricing of financial derivatives and for the calibration of parameters. This book explores the best numerical algorithms and discusses them in depth, from their mathematical analysis up to their implementation in C++ with efficient numerical libraries.
Download or read book Derivative Securities and Difference Methods written by You-lan Zhu and published by Springer Science & Business Media. This book was released on 2013-07-04 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts. In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details. The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems. In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products. This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods in financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added. Review of first edition: “...the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background." -- MATHEMATICAL REVIEWS
Download or read book Progress in Industrial Mathematics at ECMI 2014 written by Giovanni Russo and published by Springer. This book was released on 2017-09-04 with total page 1139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies, bridging the gap between mathematics and industry and contributing to the advancement of science and technology. The conference has included a presentation of EU-Maths-In (European Network of Mathematics for Industry and Innovation), a recent joint initiative of ECMI and EMS. The proceedings from this conference represent a snapshot of the current activity in industrial mathematics in Europe, and are highly relevant to anybody interested in the latest applications of mathematics to industrial problems.
Download or read book Mathematical Reviews written by and published by . This book was released on 2005 with total page 1852 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Encyclopedia of Financial Models Volume II written by Frank J. Fabozzi and published by John Wiley & Sons. This book was released on 2012-09-12 with total page 830 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of the Encyclopedia of Financial Models The need for serious coverage of financial modeling has never been greater, especially with the size, diversity, and efficiency of modern capital markets. With this in mind, the Encyclopedia of Financial Models has been created to help a broad spectrum of individuals—ranging from finance professionals to academics and students—understand financial modeling and make use of the various models currently available. Incorporating timely research and in-depth analysis, Volume 2 of the Encyclopedia of Financial Models covers both established and cutting-edge models and discusses their real-world applications. Edited by Frank Fabozzi, this volume includes contributions from global financial experts as well as academics with extensive consulting experience in this field. Organized alphabetically by category, this reliable resource consists of forty-four informative entries and provides readers with a balanced understanding of today's dynamic world of financial modeling. Volume 2 explores Equity Models and Valuation, Factor Models for Portfolio Construction, Financial Econometrics, Financial Modeling Principles, Financial Statements Analysis, Finite Mathematics for Financial Modeling, and Model Risk and Selection Emphasizes both technical and implementation issues, providing researchers, educators, students, and practitioners with the necessary background to deal with issues related to financial modeling The 3-Volume Set contains coverage of the fundamentals and advances in financial modeling and provides the mathematical and statistical techniques needed to develop and test financial models Financial models have become increasingly commonplace, as well as complex. They are essential in a wide range of financial endeavors, and the Encyclopedia of Financial Models will help put them in perspective.
Download or read book Numerical Methods in Finance with C written by Maciej J. Capiński and published by Cambridge University Press. This book was released on 2012-08-02 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides aspiring quant developers with the numerical techniques and programming skills needed in quantitative finance. No programming background required.
Download or read book Numerical Methods in Finance written by L. C. G. Rogers and published by Cambridge University Press. This book was released on 1997-06-26 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Finance describes a wide variety of numerical methods used in financial analysis.
Download or read book Novel Methods in Computational Finance written by Matthias Ehrhardt and published by Springer. This book was released on 2017-09-19 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the state-of-the-art and open problems in computational finance. It presents a collection of research outcomes and reviews of the work from the STRIKE project, an FP7 Marie Curie Initial Training Network (ITN) project in which academic partners trained early-stage researchers in close cooperation with a broader range of associated partners, including from the private sector. The aim of the project was to arrive at a deeper understanding of complex (mostly nonlinear) financial models and to develop effective and robust numerical schemes for solving linear and nonlinear problems arising from the mathematical theory of pricing financial derivatives and related financial products. This was accomplished by means of financial modelling, mathematical analysis and numerical simulations, optimal control techniques and validation of models. In recent years the computational complexity of mathematical models employed in financial mathematics has witnessed tremendous growth. Advanced numerical techniques are now essential to the majority of present-day applications in the financial industry. Special attention is devoted to a uniform methodology for both testing the latest achievements and simultaneously educating young PhD students. Most of the mathematical codes are linked into a novel computational finance toolbox, which is provided in MATLAB and PYTHON with an open access license. The book offers a valuable guide for researchers in computational finance and related areas, e.g. energy markets, with an interest in industrial mathematics.
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Download or read book Generalized Integral Transforms In Mathematical Finance written by Andrey Itkin and published by World Scientific. This book was released on 2021-10-12 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes several techniques, first invented in physics for solving problems of heat and mass transfer, and applies them to various problems of mathematical finance defined in domains with moving boundaries. These problems include: (a) semi-closed form pricing of options in the one-factor models with time-dependent barriers (Bachelier, Hull-White, CIR, CEV); (b) analyzing an interconnected banking system in the structural credit risk model with default contagion; (c) finding first hitting time density for a reducible diffusion process; (d) describing the exercise boundary of American options; (e) calculating default boundary for the structured default problem; (f) deriving a semi-closed form solution for optimal mean-reverting trading strategies; to mention but some.The main methods used in this book are generalized integral transforms and heat potentials. To find a semi-closed form solution, we need to solve a linear or nonlinear Volterra equation of the second kind and then represent the option price as a one-dimensional integral. Our analysis shows that these methods are computationally more efficient than the corresponding finite-difference methods for the backward or forward Kolmogorov PDEs (partial differential equations) while providing better accuracy and stability.We extend a large number of known results by either providing solutions on complementary or extended domains where the solution is not known yet or modifying these techniques and applying them to new types of equations, such as the Bessel process. The book contains several novel results broadly applicable in physics, mathematics, and engineering.
Download or read book Mathematical Models of Financial Derivatives written by Yue-Kuen Kwok and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.
Download or read book Project Valuation Using Real Options written by Prasad Kodukula and published by J. Ross Publishing. This book was released on 2006-07-15 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business leaders are frequently faced with investment decisions on new and ongoing projects. The challenge lies in deciding what projects to choose, expand, contract, defer, or abandon, and which method of valuation to use is the key tool in the process. This title presents a step-by-step, practical approach to real options valuation to make it easily understandable by practitioners as well as senior management. This systematic approach to project valuation helps you minimize upfront investment risks, exercise flexibility in decision making, and maximize the returns. Whereas the traditional decision tools such as discounted cash flow/net present value (DCF/NPV) analysis assume a “fixed” path ahead, real options analysis offers more flexible strategies. Considered one of the greatest innovations of modern finance, the real options approach is based on Nobel-prize winning work by three MIT economists, Fischer Black, Robert Merton, and Myron Scholes.
Download or read book An Introduction to Financial Option Valuation written by Desmond J. Higham and published by Cambridge University Press. This book was released on 2004-04-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with a working knowledge of a first year calculus. Written in a series of short chapters, its self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms. No prior background in probability, statistics or numerical analysis is required. Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and in particular, variance reduction techniques for the Monte Carlo method. Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. Furthermore, the author has made heavy use of figures and examples, and has included computations based on real stock market data.
Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.