EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fourier Methods for Mathematicians  Scientists and Engineers

Download or read book Fourier Methods for Mathematicians Scientists and Engineers written by Mark Cartwright and published by . This book was released on 1990 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Methods for Engineers and Scientists 2

Download or read book Mathematical Methods for Engineers and Scientists 2 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2006-11-30 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to help students feel comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Book Mathematical Methods for Engineers and Scientists 3

Download or read book Mathematical Methods for Engineers and Scientists 3 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2007-01-10 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Book Numerical Methods for Scientists and Engineers

Download or read book Numerical Methods for Scientists and Engineers written by Richard Hamming and published by Courier Corporation. This book was released on 2012-04-25 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Book Modern Mathematical Methods For Scientists And Engineers  A Street smart Introduction

Download or read book Modern Mathematical Methods For Scientists And Engineers A Street smart Introduction written by Athanassios Fokas and published by World Scientific. This book was released on 2022-12-12 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Mathematical Methods for Scientists and Engineers is a modern introduction to basic topics in mathematics at the undergraduate level, with emphasis on explanations and applications to real-life problems. There is also an 'Application' section at the end of each chapter, with topics drawn from a variety of areas, including neural networks, fluid dynamics, and the behavior of 'put' and 'call' options in financial markets. The book presents several modern important and computationally efficient topics, including feedforward neural networks, wavelets, generalized functions, stochastic optimization methods, and numerical methods.A unique and novel feature of the book is the introduction of a recently developed method for solving partial differential equations (PDEs), called the unified transform. PDEs are the mathematical cornerstone for describing an astonishingly wide range of phenomena, from quantum mechanics to ocean waves, to the diffusion of heat in matter and the behavior of financial markets. Despite the efforts of many famous mathematicians, physicists and engineers, the solution of partial differential equations remains a challenge.The unified transform greatly facilitates this task. For example, two and a half centuries after Jean d'Alembert formulated the wave equation and presented a solution for solving a simple problem for this equation, the unified transform derives in a simple manner a generalization of the d'Alembert solution, valid for general boundary value problems. Moreover, two centuries after Joseph Fourier introduced the classical tool of the Fourier series for solving the heat equation, the unified transform constructs a new solution to this ubiquitous PDE, with important analytical and numerical advantages in comparison to the classical solutions. The authors present the unified transform pedagogically, building all the necessary background, including functions of real and of complex variables and the Fourier transform, illustrating the method with numerous examples.Broad in scope, but pedagogical in style and content, the book is an introduction to powerful mathematical concepts and modern tools for students in science and engineering.

Book Mathematical Principles of Signal Processing

Download or read book Mathematical Principles of Signal Processing written by Pierre Bremaud and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "[...] the interested reader will find in Bremaud’s book an invaluable reference because of its coverage, scope and style, as well as of the unified treatment it offers of (signal processing oriented) Fourier and wavelet basics." Mathematical Reviews

Book Fourier Methods in Science and Engineering

Download or read book Fourier Methods in Science and Engineering written by Wen L. Li and published by CRC Press. This book was released on 2022-11-21 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Book Mathematical Methods for Engineers and Scientists 3

Download or read book Mathematical Methods for Engineers and Scientists 3 written by Kwong-Tin Tang and published by Springer Science & Business Media. This book was released on 2006-11-30 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Book Mathematical Techniques for Engineers and Scientists

Download or read book Mathematical Techniques for Engineers and Scientists written by Larry C. Andrews and published by SPIE Press. This book was released on 2003 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.

Book Fourier Methods in Science and Engineering

Download or read book Fourier Methods in Science and Engineering written by Wen L. Li and published by CRC Press. This book was released on 2022-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative book discusses and applies the generalized Fourier Series to a variety of problems commonly encountered within science and engineering, equipping the readers with a clear pathway through which to use the Fourier methods as a solution technique for a wide range of differential equations and boundary value problems. Beginning with an overview of the conventional Fourier series theory, this book introduces the generalized Fourier series (GFS), emphasizing its notable rate of convergence when compared to the conventional Fourier series expansions. After systematically presenting the GFS as a powerful and unified solution method for ordinary differential equations and partial differential equations, this book expands on some representative boundary value problems, diving into their multiscale characteristics. This book will provide readers with the comprehensive foundation necessary for solving a wide spectrum of mathematical problems key to practical applications. It will also be of interest to researchers, engineers, and college students in various science, engineering, and mathematics fields.

Book Applied Fourier Analysis

Download or read book Applied Fourier Analysis written by Tim Olson and published by Birkhäuser. This book was released on 2017-11-20 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of its kind, this focused textbook serves as a self-contained resource for teaching from scratch the fundamental mathematics of Fourier analysis and illustrating some of its most current, interesting applications, including medical imaging and radar processing. Developed by the author from extensive classroom teaching experience, it provides a breadth of theory that allows students to appreciate the utility of the subject, but at as accessible a depth as possible. With myriad applications included, this book can be adapted to a one or two semester course in Fourier Analysis or serve as the basis for independent study. Applied Fourier Analysis assumes no prior knowledge of analysis from its readers, and begins by making the transition from linear algebra to functional analysis. It goes on to cover basic Fourier series and Fourier transforms before delving into applications in sampling and interpolation theory, digital communications, radar processing, medi cal imaging, and heat and wave equations. For all applications, ample practice exercises are given throughout, with collections of more in-depth problems built up into exploratory chapter projects. Illuminating videos are available on Springer.com and Link.Springer.com that present animated visualizations of several concepts. The content of the book itself is limited to what students will need to deal with in these fields, and avoids spending undue time studying proofs or building toward more abstract concepts. The book is perhaps best suited for courses aimed at upper division undergraduates and early graduates in mathematics, electrical engineering, mechanical engineering, computer science, physics, and other natural sciences, but in general it is a highly valuable resource for introducing a broad range of students to Fourier analysis.

Book Fourier Transforms

Download or read book Fourier Transforms written by Robert M. Gray and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.

Book A First Course in Fourier Analysis

Download or read book A First Course in Fourier Analysis written by David W. Kammler and published by Cambridge University Press. This book was released on 2008-01-17 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.

Book Fourier Methods in Imaging

Download or read book Fourier Methods in Imaging written by Roger L. Easton Jr. and published by John Wiley & Sons. This book was released on 2010-11-18 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists

Book Mathematical Methods for Scientists and Engineers

Download or read book Mathematical Methods for Scientists and Engineers written by Donald Allan McQuarrie and published by University Science Books. This book was released on 2003 with total page 1188 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.

Book Applied Mathematics

    Book Details:
  • Author : Charles K. Chui
  • Publisher : Springer Science & Business Media
  • Release : 2013-10-01
  • ISBN : 9462390096
  • Pages : 567 pages

Download or read book Applied Mathematics written by Charles K. Chui and published by Springer Science & Business Media. This book was released on 2013-10-01 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, apart from introducing the basic aspects of applied mathematics, focuses on recent topics such as information data manipulation, information coding, data approximation, data dimensionality reduction, data compression, time-frequency and time scale bases, image manipulation, and image noise removal. The methods treated in more detail include spectral representation and “frequency” of the data, providing valuable information for, e.g. data compression and noise removal. Furthermore, a special emphasis is also put on the concept of “wavelets” in connection with the “multi-scale” structure of data-sets. The presentation of the book is elementary and easily accessible, requiring only some knowledge of elementary linear algebra and calculus. All important concepts are illustrated with examples, and each section contains between 10 an 25 exercises. A teaching guide, depending on the level and discipline of instructions is included for classroom teaching and self-study.

Book Mathematical Analysis for Engineers

Download or read book Mathematical Analysis for Engineers written by Bernard Dacorogna and published by World Scientific Publishing Company. This book was released on 2012-06-18 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book follows an advanced course in analysis (vector analysis, complex analysis and Fourier analysis) for engineering students, but can also be useful, as a complement to a more theoretical course, to mathematics and physics students. The first three parts of the book represent the theoretical aspect and are independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts. Foreword Foreword (71 KB) Sample Chapter(s) Chapter 1: Differential Operators of Mathematical Physics (272 KB) Chapter 9: Holomorphic functions and Cauchy–Riemann equations (248 KB) Chapter 14: Fourier series (281 KB) Request Inspection Copy Contents: Vector Analysis:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremAppendixComplex Analysis:Holomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier Analysis:Fourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential EquationsSolutions to the Exercises:Differential Operators of Mathematical PhysicsLine IntegralsGradient Vector FieldsGreen TheoremSurface IntegralsDivergence TheoremStokes TheoremHolomorphic Functions and Cauchy–Riemann EquationsComplex IntegrationLaurent SeriesResidue Theorem and ApplicationsConformal MappingFourier SeriesFourier TransformLaplace TransformApplications to Ordinary Differential EquationsApplications to Partial Differential Equations Readership: Undergraduate students in analysis & differential equations, complex analysis, civil, electrical and mechanical engineering.