Download or read book Fourier Analysis on Finite Abelian Groups written by Bao Luong and published by Springer Science & Business Media. This book was released on 2009-08-14 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
Download or read book Fourier Analysis on Finite Groups and Applications written by Audrey Terras and published by Cambridge University Press. This book was released on 1999-03-28 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.
Download or read book Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design written by Radomir S. Stankovic and published by John Wiley & Sons. This book was released on 2005-08-08 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover applications of Fourier analysis on finite non-Abeliangroups The majority of publications in spectral techniques considerFourier transform on Abelian groups. However, non-Abelian groupsprovide notable advantages in efficient implementations of spectralmethods. Fourier Analysis on Finite Groups with Applications in SignalProcessing and System Design examines aspects of Fourieranalysis on finite non-Abelian groups and discusses differentmethods used to determine compact representations for discretefunctions providing for their efficient realizations and relatedapplications. Switching functions are included as an example ofdiscrete functions in engineering practice. Additionally,consideration is given to the polynomial expressions and decisiondiagrams defined in terms of Fourier transform on finitenon-Abelian groups. A solid foundation of this complex topic is provided bybeginning with a review of signals and their mathematical modelsand Fourier analysis. Next, the book examines recent achievementsand discoveries in: Matrix interpretation of the fast Fourier transform Optimization of decision diagrams Functional expressions on quaternion groups Gibbs derivatives on finite groups Linear systems on finite non-Abelian groups Hilbert transform on finite groups Among the highlights is an in-depth coverage of applications ofabstract harmonic analysis on finite non-Abelian groups in compactrepresentations of discrete functions and related tasks in signalprocessing and system design, including logic design. All chaptersare self-contained, each with a list of references to facilitatethe development of specialized courses or self-study. With nearly 100 illustrative figures and fifty tables, this isan excellent textbook for graduate-level students and researchersin signal processing, logic design, and system theory-as well asthe more general topics of computer science and appliedmathematics.
Download or read book Fourier Analysis on Groups written by Walter Rudin and published by Courier Dover Publications. This book was released on 2017-04-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-contained treatment by a master mathematical expositor ranges from introductory chapters on basic theorems of Fourier analysis and structure of locally compact Abelian groups to extensive appendixes on topology, topological groups, more. 1962 edition.
Download or read book Harmonic Analysis on Finite Groups written by Tullio Ceccherini-Silberstein and published by Cambridge University Press. This book was released on 2008-03-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from a few concrete problems such as random walks on the discrete circle and the finite ultrametric space, this book develops the necessary tools for the asymptotic analysis of these processes. Its topics range from the basic theory needed for students new to this area, to advanced topics such as the theory of Green's algebras, the complete analysis of the random matchings, and a presentation of the presentation theory of the symmetric group. This self-contained, detailed study culminates with case-by-case analyses of the cut-off phenomenon discovered by Persi Diaconis.
Download or read book Fourier Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2011-02-11 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Download or read book Representation Theory of Finite Groups written by Benjamin Steinberg and published by Springer Science & Business Media. This book was released on 2011-10-23 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Download or read book Discrete Harmonic Analysis written by Tullio Ceccherini-Silberstein and published by Cambridge University Press. This book was released on 2018-06-21 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.
Download or read book Mathematics of Multidimensional Fourier Transform Algorithms written by Richard Tolimieri and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main emphasis of this book is the development of algorithms for processing multi-dimensional digital signals, and particularly algorithms for multi-dimensional Fourier transforms, in a form that is convenient for writing highly efficient code on a variety of vector and parallel computers.
Download or read book Gabor Analysis and Algorithms written by Hans G. Feichtinger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density.
Download or read book Fourier Analysis on Number Fields written by Dinakar Ramakrishnan and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Download or read book Higher Order Fourier Analysis written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-12-30 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher order Fourier analysis is a subject that has become very active only recently. This book serves as an introduction to the field, giving the beginning graduate student in the subject a high-level overview of the field. The text focuses on the simplest illustrative examples of key results, serving as a companion to the existing literature.
Download or read book Finite Geometry and Character Theory written by Alexander Pott and published by Springer. This book was released on 2006-11-14 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Difference sets are of central interest in finite geometry and design theory. One of the main techniques to investigate abelian difference sets is a discrete version of the classical Fourier transform (i.e., character theory) in connection with algebraic number theory. This approach is described using only basic knowledge of algebra and algebraic number theory. It contains not only most of our present knowledge about abelian difference sets, but also gives applications of character theory to projective planes with quasiregular collineation groups. Therefore, the book is of interest both to geometers and mathematicians working on difference sets. Moreover, the Fourier transform is important in more applied branches of discrete mathematics such as coding theory and shift register sequences.
Download or read book Joseph Fourier 250th Birthday written by Frédéric Barbaresco and published by MDPI. This book was released on 2019-03-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
Download or read book Random Fourier Series with Applications to Harmonic Analysis written by Michael B. Marcus and published by Princeton University Press. This book was released on 1981-11-21 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The changes to U.S. immigration law that were instituted in 1965 have led to an influx of West African immigrants to New York, creating an enclave Harlem residents now call ''Little Africa.'' These immigrants are immediately recognizable as African in their wide-sleeved robes and tasseled hats, but most native-born members of the community are unaware of the crucial role Islam plays in immigrants' lives. Zain Abdullah takes us inside the lives of these new immigrants and shows how they deal with being a double minority in a country where both blacks and Muslims are stigmatized. Dealing with this dual identity, Abdullah discovers, is extraordinarily complex. Some longtime residents embrace these immigrants and see their arrival as an opportunity to reclaim their African heritage, while others see the immigrants as scornful invaders. In turn, African immigrants often take a particularly harsh view of their new neighbors, buying into the worst stereotypes about American-born blacks being lazy and incorrigible. And while there has long been a large Muslim presence in Harlem, and residents often see Islam as a force for social good, African-born Muslims see their Islamic identity disregarded by most of their neighbors. Abdullah weaves together the stories of these African Muslims to paint a fascinating portrait of a community's efforts to carve out space for itself in a new country. -- Book jacket.
Download or read book A First Course in Harmonic Analysis written by Anton Deitmar and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces harmonic analysis at an undergraduate level. In doing so it covers Fourier analysis and paves the way for Poisson Summation Formula. Another central feature is that is makes the reader aware of the fact that both principal incarnations of Fourier theory, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The final goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. These techniques are explained in the context of matrix groups as a principal example.
Download or read book Analysis of Boolean Functions written by Ryan O'Donnell and published by Cambridge University Press. This book was released on 2014-06-05 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text gives a thorough overview of the analysis of Boolean functions, beginning with the most basic definitions and proceeding to advanced topics.