EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modelling of Flow and Transport in Fractal Porous Media

Download or read book Modelling of Flow and Transport in Fractal Porous Media written by Jianchao Cai and published by Elsevier. This book was released on 2020-11-05 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures

Book Computational Methods for Flow and Transport in Porous Media

Download or read book Computational Methods for Flow and Transport in Porous Media written by J.M. Crolet and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first Symposium on Recent Advances in Problems of Flow and Transport in Porous Media was held in Marrakech in June '96 and has provided a focus for the utilization of computer methods for solving the many complex problems encountered in the field of solute transport in porous media. This symposium has been successful in bringing together scientists, physicists, hydrogeologists, researchers in soil and fluid mechanics and engineers involved in this multidisciplinary subject. It is clear that the utilization of computer-based models in this domain is still rapidly expanding and that new and novel solutions are being developed. The contributed papers which form this book reflect the recent advances, in particular with respect to new methods, inverse problems, reactive transport, unsaturated media and upscaling. These have been subdivided into the following sections: I. Numerical methods II. Mass transport and heat transfer III. Comparison with experimentation and simulation of real cases This book contains reviewed articles of the top presentations held during the International Symposium on Computer Methods in Porous Media Engineering which took place in Giens (France) in October 1998. All of the presentations and the optimism shown during the meeting provided further evidence that computer modeling is making remarkable progress and is indeed becoming an essential toolkit in the field of porous media and solute transport. I believe that the content of this book provides evidence of this and furthermore gives a comprehensive review of the theoretical developments and applications.

Book Transport Processes in Porous Media

Download or read book Transport Processes in Porous Media written by Frank A. Coutelieris and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.

Book Porous Media Transport Phenomena

Download or read book Porous Media Transport Phenomena written by Faruk Civan and published by John Wiley & Sons. This book was released on 2011-07-18 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book that makes transport in porous media accessible to students and researchers alike Porous Media Transport Phenomena covers the general theories behind flow and transport in porous media a solid permeated by a network of pores filled with fluid which encompasses rocks, biological tissues, ceramics, and much more. Designed for use in graduate courses in various disciplines involving fluids in porous materials, and as a reference for practitioners in the field, the text includes exercises and practical applications while avoiding the complex math found in other books, allowing the reader to focus on the central elements of the topic. Covering general porous media applications, including the effects of temperature and particle migration, and placing an emphasis on energy resource development, the book provides an overview of mass, momentum, and energy conservation equations, and their applications in engineered and natural porous media for general applications. Offering a multidisciplinary approach to transport in porous media, material is presented in a uniform format with consistent SI units. An indispensable resource on an extremely wide and varied topic drawn from numerous engineering fields, Porous Media Transport Phenomena includes a solutions manual for all exercises found in the book, additional questions for study purposes, and PowerPoint slides that follow the order of the text.

Book Recent Advances in Problems of Flow and Transport in Porous Media

Download or read book Recent Advances in Problems of Flow and Transport in Porous Media written by J.M. Crolet and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media, and especially phenomena of transport in such materials, are an impor1ant field of interest for geologists, hydrogeologists, researchers in soil and fluid mechanics, petroleum and chemical engineers, physicists and scientists in many other disciplines. The development of better numerical simulation techniques in combination with the enormous expansion of computer tools, have enabled numerical simulation of transport phenomena (mass of phases and components, energy etc. ) in porous domains of interest. Before any practical application of the results of such simulations can be used, it is essential that the simulation models have been proven to be valid. In order to establish the greatest possible coherence between the models and the physical reality, frequent interaction between numericians, mathematicians and the previously quoted researchers, is necessary. Once this coherence is established, the numerical simulations could be used to predict various phenomena such as water management, propagation of pollutants etc. These simulations could be, in many cases, the only financially acceptable tool to carry out an investigation. Current studies within various fields of applications include not only physical comprehension aspects of flow and energy or solute transport in saturated or unsaturated media but also numerical aspects in deriving strong complex equations. Among the various fields of applications generally two types of problems can be observed. Those associated with the pollution of the environment and those linked to water management. The former are essentially a problem in industrialized countries, the latter are a major source of concern in North-Africa.

Book Multiphase Fluid Flow in Porous and Fractured Reservoirs

Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website

Book Transport Processes in Porous Media

Download or read book Transport Processes in Porous Media written by Frank A. Coutelieris and published by Springer Science & Business Media. This book was released on 2012-01-25 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.

Book Handbook of Porous Media

Download or read book Handbook of Porous Media written by Kambiz Vafai and published by CRC Press. This book was released on 2015-06-23 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i

Book Fundamentals of Transport Phenomena in Porous Media

Download or read book Fundamentals of Transport Phenomena in Porous Media written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lectures presented at the NATO Advanced Study Institute that took place at the University of Delaware, Newark, Delaware, July 18-27, 1982. The purpose of this Institute was to provide an international forum for exchange of ideas and dissemination of knowledge on some selected topics in Mechanics of Fluids in Porous Media. Processes of transport of such extensive quantities as mass of a phase, mass of a component of a phase, momentum and/or heat occur in diversified fields, such as petroleum reservoir engineer ing, groundwater hydraulics, soil mechanics, industrial filtration, water purification, wastewater treatment, soil drainage and irri gation, and geothermal energy production. In all these areas, scientists, engineers and planners make use of mathematical models that describe the relevant transport processes that occur within porous medium domains, and enable the forecasting of the future state of the latter in response to planned activities. The mathe matical models, in turn, are based on the understanding of phenomena, often within the void space, and on theories that re late these phenomena to measurable quantities. Because of the pressing needs in areas of practical interest, such as the develop ment of groundwater resources, the control and abatement of groundwater contamination, underground energy storage and geo thermal energy production, a vast amount of research efforts in all these fields has contributed, especially in the last t~o decades, to our understanding and ability to describe transport phenomena.

Book Flow and Transport in Porous Formations

Download or read book Flow and Transport in Porous Formations written by Gedeon Dagan and published by . This book was released on 1989 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Transport Phenomena in Porous Media

Download or read book Advances in Transport Phenomena in Porous Media written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the lectures presented at the NATO ADVANCED STUDY INSTITUTE that took place at Newark, Delaware, U. S. A. , July 14-23, 1985. The objective of this meeting was to present and discuss selected topics associated with transport phenomena in porous media. By their very nature, porous media and phenomena of transport of extensive quantities that take place in them, are very complex. The solid matrix may be rigid, or deformable (elastically, or following some other constitutive relation), the void space may be occupied by one or more fluid phases. Each fluid phase may be composed of more than one component, with the various components capable of interacting among themselves and/or with the solid matrix. The transport process may be isothermal or non-isothermal, with or without phase changes. Porous medium domains in which extensive quantities, such as mass of a fluid phase, component of a fluid phase, or heat of the porous medium as a whole, are being transported occur in the practice in a variety of disciplines.

Book Porous and Complex Flow Structures in Modern Technologies

Download or read book Porous and Complex Flow Structures in Modern Technologies written by Adrian Bejan and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous and Complex Flow Structures in Modern Technologies represents a new approach to the field, considering the fundamentals of porous media in terms of the key roles played by these materials in modern technology. Intended as a text for advanced undergraduates and as a reference for practicing engineers, the book uses the physics of flows in porous materials to tie together a wide variety of important issues from such fields as biomedical engineering, energy conversion, civil engineering, electronics, chemical engineering, and environmental engineering. Thus, for example, flows of water and oil through porous ground play a central role in energy exploration and recovery (oil wells, geothermal fluids), energy conversion (effluents from refineries and power plants), and environmental engineering (leachates from waste repositories). Similarly, the demands of miniaturization in electronics and in biomedical applications are driving research into the flow of heat and fluids through small-scale porous media (heat exchangers, filters, gas exchangers). Filters, catalytic converters, the drying of stored grains, and a myriad of other applications involve flows through porous media. By providing a unified theoretical framework that includes not only the traditional homogeneous and isotropic media but also models in which the assumptions of representative elemental volumes or global thermal equilibrium fail, the book provides practicing engineers the tools they need to analyze complex situations that arise in practice. This volume includes examples, solved problems and an extensive glossary of symbols.

Book Flow and Transport in Complex Porous Media

Download or read book Flow and Transport in Complex Porous Media written by Hamza Oukili (docteur en physique).) and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle methods have been extensively used for modeling transport problems in porous soils, aquifers, and reservoirs. They reduce or avoid some of the problems of Eulerian methods, e.g. instabilities, excessive artificial diffusion, mass balance, and/or oscillations that could lead to negative concentrations. This thesis develops a new class of gridless Lagrangian particle methods for modeling flow and transport phenomena in complex porous media with heterogeneities and discontinuities. Firstly, stochastic processes are reviewed, in relation to particle positions X(t) and to the corresponding macroscopic Advection-Diffusion Equation (ADE). This review leads to the conditions required for the Probability Density Function (PDF) of X(t) to satisfy the Fokker-Planck equation (and the ADE). However, one of these conditions is the differentiability of transport coefficients: therefore, discontinuities are difficult to treat, particularly discontinuous diffusion D(x) and porosity q(x). In the literature on particle Random Walks, the methods used to handle discontinuous diffusion required excessively small time steps. These restrictions on the time step lead to inefficient algorithms. In this study, we propose a novel approach without restrictions on time step size. The novel RWPT (Random Walk Particle Tracking) algorithms proposed here are discrete in time and continuous in space (gridless). They are based on an adaptive “Stop&Go” time-stepping, combined with partial reflection/refraction schemes, and extended with three new concepts: negative mass particles; adaptive mass particles; and “homing” particles. To test the new Stop&Go RWPT schemes in infinite domains, we develop analytical and semi-analyticalsolutions for diffusion in the presence of multiple interfaces (discontinuous multi-layered medium) in infinite domains. The results show that the proposed Stop&Go RWPT schemes (with adaptive, negative, or homing particles) fit extremely well the semi-analytical solutions, even for very high contrasts for transport properties even in the neighborhood of the interfaces. The schemes provide a correct diffusive solution in only a few macro-steps (macroscopic time steps), with a precision that depends only on the number of particles, and not on the macro-step. The algorithms are then, extended from infinite to semi-infinite and finite domains. Dirichlet conditions are particularly difficult to implement in particle methods. Thus, in this thesis we propose different methods on how to implement Dirichlet boundary conditions with the “discontinuous” RWPT algorithm. This study proposes an algorithm to solve diffusion equations semi-analytically in heterogeneous semi-infinite and finite domains with Dirichlet boundary conditions. The RWPT Dirichlet methods are then checked analytically and verified for various configurations. Finally, the RWPT method is applied for studying diffusion at different scales in 2D composite media (grain/pore systems). A zero-flux condition is assumed locally at the grain/pore interfaces. At the macro-scale, diffusion occurs in an equivalent effective homogeneous medium with macroscopic parameters (porosity and effective diffusion coefficients) obtained from the temporal evolution of second order moments. The RWPT algorithm is then applied to more complex geometries of grains and pores. Different configurations or structures at the micro-scale level will be chosen in order to obtain composite isotropic media at the macro-scale level with different porosities. Then, by choosing elongated micro-structures, anisotropy effects emerge at the macroscopic level. Effective macro-scale properties (porosities, effective diffusion tensors, tortuosities) are calculated using the second order moment. The different methods proposed in this thesis can be used for different problems, since each has its drawbacks and advantages. The schemes proposed seem promising with a view to extensions towards more complex 3D geometries.

Book Percolation Theory for Flow in Porous Media

Download or read book Percolation Theory for Flow in Porous Media written by Allen Hunt and published by Springer Science & Business Media. This book was released on 2009-05-05 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why would we wish to start a 2nd edition of “Percolation theory for ?ow in porous media” only two years after the ?rst one was ?nished? There are essentially three reasons: 1) Reviews in the soil physics community have pointed out that the introductory material on percolation theory could have been more accessible. Our additional experience in teaching this material led us to believe that we could improve this aspect of the book. In the context of rewriting the ?rst chapter, however, we also expanded the discussion of Bethe lattices and their relevance for “classical” - ponents of percolation theory, thus giving more of a basis for the discussion of the relevance of hyperscaling. This addition, though it will not tend to make the book more accessible to hydrologists, was useful in making it a more complete reference, and these sections have been marked as being possible to omit in a ?rst reading. It also forced a division of the ?rst chapter into two. We hope that physicists without a background in percolation theory will now also ?nd the - troductory material somewhat more satisfactory. 2) We have done considerable further work on problems of electrical conductivity, thermal conductivity, and electromechanical coupling.

Book Essentials of Multiphase Flow and Transport in Porous Media

Download or read book Essentials of Multiphase Flow and Transport in Porous Media written by George F. Pinder and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the fundamental concepts that underlie the physics of multiphase flow and transport in porous media with the information in Essentials of Multiphase Flow in Porous Media, which demonstrates the mathematical-physical ways to express and address multiphase flow problems. Find a logical, step-by-step introduction to everything from the simple concepts to the advanced equations useful for addressing real-world problems like infiltration, groundwater contamination, and movement of non-aqueous phase liquids. Discover and apply the governing equations for application to these and other problems in light of the physics that influence system behavior.

Book Porous Media Fluid Transport and Pore Structure

Download or read book Porous Media Fluid Transport and Pore Structure written by F Dullien and published by Elsevier. This book was released on 2012-12-02 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous Media: Fluid Transport and Pore Structure presents relevant data on the role of pore structure in terms of transport phenomena in pore spaces. The information is then applied to the interpretation of various experiments and results of model calculations. This book emphasizes the discussion of ""flow through porous media"" in terms of interactions among the three main factors. These factors are transport phenomena, interfacial effects, and pore structure. An introductory chapter opens the text and presents some of the basic concepts and terms that will be encountered all throughout. Chapters 2 to 4 focus on the important foundations of the physical phenomena as applied in the pore space of porous media. These foundations are capillarity, pore structure, and single phase flow and diffusion. Chapters 5 to 7 discuss more in detail the different applications of pore structure to various operations and processes. Some of the concepts covered in this part of the book include flow and/or diffusion through a porous medium, simultaneous flow of immiscible fluids and immiscible displacement, and miscible displacement and hydrodynamic dispersion. This book is a good reference to students, scientists, and engineers in the field of chemistry, physics, and biology.