EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Flocking and Formation as Mission Control Strategies for Multi Agent Systems  Comparative Evaluation and Development of a Cooperative Approach

Download or read book Flocking and Formation as Mission Control Strategies for Multi Agent Systems Comparative Evaluation and Development of a Cooperative Approach written by Avraham Turgeman and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robust Cooperative Control of Multi Agent Systems

Download or read book Robust Cooperative Control of Multi Agent Systems written by Chunyan Wang and published by CRC Press. This book was released on 2021-05-19 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise introduction to the latest advances in robust cooperative control design for multi-agent systems with input delay and external disturbances, especially from a prediction and observation perspective. The volume covers a wide range of applications, such as the trajectory tracking of quadrotors, formation flying of multiple unmanned aerial vehicles (UAVs) and fixed-time formation of ground vehicles. Robust cooperative control means that multi-agent systems are able to achieve specified control tasks while remaining robust in the face of both parametric and nonparametric model uncertainties. In addition, the authors cover a wide range of key issues in cooperative control, such as communication and input delays, parametric model uncertainties and external disturbances. Moving beyond the scope of existing works, a systematic prediction and observation approach to designing robust cooperative control laws is presented. About the Authors Chunyan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zongyu Zuo is a full Professor with the School of Automation Science and Electrical Engineering, Beihang University, China. Jianan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zhengtao Ding is a Professor in the Department of Electrical and Electronic Engineering at University of Manchester, U.K.

Book Cooperative Control of Multi Agent Systems

Download or read book Cooperative Control of Multi Agent Systems written by Frank L. Lewis and published by Springer Science & Business Media. This book was released on 2013-12-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.

Book Cooperative Coordination and Formation Control for Multi agent Systems

Download or read book Cooperative Coordination and Formation Control for Multi agent Systems written by Zhiyong Sun and published by Springer. This book was released on 2018-02-23 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis presents new results on multi-agent formation control, focusing on the distributed stabilization control of rigid formation shapes. It analyzes a range of current research problems such as problems concerning the equilibrium and stability of formation control systems, or the problem of cooperative coordination control when agents have general dynamical models, and discusses practical considerations arising during the implementation of established formation control algorithms. In addition, the thesis presents models of increasing complexity, from single integrator models, to double integrator models, to agents modeled by nonlinear kinematic and dynamic equations, including the familiar unicycle model and nonlinear system equations with drift terms. Presenting the fruits of a close collaboration between several top control groups at leading universities including Yale University, Groningen University, Purdue University and Gwangju Institute of Science and Technology (GIST), the thesis spans various research areas, including robustness issues in formations, quantization-based coordination, exponential stability in formation systems, and cooperative coordination of networked heterogeneous systems.

Book Cooperative Control of Multi Agent Systems

Download or read book Cooperative Control of Multi Agent Systems written by Yue Wang and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the state of the art in the control of multi-agent systems theory and applications The superiority of multi-agent systems over single agents for the control of unmanned air, water and ground vehicles has been clearly demonstrated in a wide range of application areas. Their large-scale spatial distribution, robustness, high scalability and low cost enable multi-agent systems to achieve tasks that could not successfully be performed by even the most sophisticated single agent systems. Cooperative Control of Multi-Agent Systems: Theory and Applications provides a wide-ranging review of the latest developments in the cooperative control of multi-agent systems theory and applications. The applications described are mainly in the areas of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). Throughout, the authors link basic theory to multi-agent cooperative control practice — illustrated within the context of highly-realistic scenarios of high-level missions — without losing site of the mathematical background needed to provide performance guarantees under general working conditions. Many of the problems and solutions considered involve combinations of both types of vehicles. Topics explored include target assignment, target tracking, consensus, stochastic game theory-based framework, event-triggered control, topology design and identification, coordination under uncertainty and coverage control. Establishes a bridge between fundamental cooperative control theory and specific problems of interest in a wide range of applications areas Includes example applications from the fields of space exploration, radiation shielding, site clearance, tracking/classification, surveillance, search-and-rescue and more Features detailed presentations of specific algorithms and application frameworks with relevant commercial and military applications Provides a comprehensive look at the latest developments in this rapidly evolving field, while offering informed speculation on future directions for collective control systems The use of multi-agent system technologies in both everyday commercial use and national defense is certain to increase tremendously in the years ahead, making this book a valuable resource for researchers, engineers, and applied mathematicians working in systems and controls, as well as advanced undergraduates and graduate students interested in those areas.

Book Distributed Cooperative Control of Multi agent Systems

Download or read book Distributed Cooperative Control of Multi agent Systems written by Wenwu Yu and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control

Book Cooperative Control of Multi Agent Systems

Download or read book Cooperative Control of Multi Agent Systems written by Zhongkui Li and published by CRC Press. This book was released on 2017-12-19 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear multi-agent systems Studies the H∞ and H2 consensus problems for linear multi-agent systems subject to external disturbances Designs distributed adaptive consensus protocols for continuous-time linear multi-agent systems Considers the distributed tracking control problem for linear multi-agent systems with a leader of nonzero control input Examines the distributed containment control problem for the case with multiple leaders Covers the robust cooperative control problem for multi-agent systems with linear nominal agent dynamics subject to heterogeneous matching uncertainties Discusses the global consensus problem for Lipschitz nonlinear multi-agent systems Cooperative Control of Multi-Agent Systems: A Consensus Region Approach provides a novel approach to designing distributed cooperative protocols for multi-agent systems with complex dynamics. The proposed consensus region decouples the design of the feedback gain matrices of the cooperative protocols from the communication graph and serves as a measure for the robustness of the protocols to variations of the communication graph. By exploiting the decoupling feature, adaptive cooperative protocols are presented that can be designed and implemented in a fully distributed fashion.

Book Distributed Cooperative Control and Communication for Multi agent Systems

Download or read book Distributed Cooperative Control and Communication for Multi agent Systems written by Dong Yue and published by Springer Nature. This book was released on 2021-02-15 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates distributed cooperative control and communication of MASs including linear systems, nonlinear systems and multiple rigid body systems. The model-based and data-driven control method are employed to design the (optimal) cooperative control protocol. The approaches of this book consist of model-based and data-driven control such as predictive control, event-triggered control, optimal control, adaptive dynamic programming, etc. From this book, readers can learn about distributed cooperative control methods, data-driven control, finite-time stability analysis, cooperative attitude control of multiple rigid bodies. Some fundamental knowledge prepared to read this book is finite-time stability theory, event-triggered sampling mechanism, adaptive dynamic programming and optimal control.

Book Cooperative Control of Multi agent Systems

Download or read book Cooperative Control of Multi agent Systems written by Anokina Shalimoon and published by . This book was released on 2018 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate project focuses on various algorithms within subject of cooperative control of multi-agent systems. It begins with background information on graph theory and mathematical preliminaries utilized in multi-agent systems, and explains consensus, flocking, and formation algorithms in theoretical details and via simulations. Consensus algorithm is described for both continuous and discrete-time with mathematical examples; Flocking algorithm based on Craig Reynolds’ rule is presented in terms of collision avoidance, velocity matching and flock centering. Formation control algorithm is studied in theoretical details and software simulations, with emphasis on generating pre-defined formations by examining feedback gains. Throughout this project, MATLAB simulations are conducted to illustrate each of the above three algorithms. For consensus algorithms, consensus convergence rates are compared for undirected versus directed networks. For flocking algorithms, behaviors of multi-agent systems are analyzed using Reynolds’ rule. To conclude, formation control algorithm is examined to obtain desired shapes starting at a random state by varying feedback gains.

Book Cooperative Tracking Control and Regulation for a Class of Multi agent Systems

Download or read book Cooperative Tracking Control and Regulation for a Class of Multi agent Systems written by Hongjing Liang and published by Springer. This book was released on 2019-05-28 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the characteristics of cooperative control problems for general linear multi-agent systems, including formation control, air traffic control, rendezvous, foraging, role assignment, and cooperative search. On this basis and combined with linear system theory, it introduces readers to the cooperative tracking problem for identical continuous-time multi-agent systems under state-coupled dynamics; the cooperative output regulation for heterogeneous multi-agent systems; and the optimal output regulation for model-free multi-agent systems. In closing, the results are extended to multiple leaders, and cooperative containment control for uncertain multi-agent systems is addressed. Given its scope, the book offers an essential reference guide for researchers and designers of multi-agent systems, as well as a valuable resource for upper-level undergraduate and graduate students.

Book Fixed Time Cooperative Control of Multi Agent Systems

Download or read book Fixed Time Cooperative Control of Multi Agent Systems written by Zongyu Zuo and published by Springer. This book was released on 2019-05-28 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents new theories and methods for fixed-time cooperative control of multi-agent systems. Fundamental concepts of fixed-time stability and stabilization are introduced with insightful understanding. This book presents solutions for several problems of fixed-time cooperative control using systematic design methods. The book compares fixed-time cooperative control with asymptotic cooperative control, demonstrating how the former can achieve better closed-loop performance and disturbance rejection properties. It also discusses the differences from finite-time control, and shows how fixed-time cooperative control can produce the faster rate of convergence and provide an explicit estimate of the settling time independent of initial conditions. This monograph presents multiple applications of fixed-time control schemes, including to distributed optimization of multi-agent systems, making it useful to students, researchers and engineers alike.

Book Coopertive and Consensus based Control for a Team of Multi agent Systems

Download or read book Coopertive and Consensus based Control for a Team of Multi agent Systems written by Iman Saboori and published by . This book was released on 2016 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cooperative control has attracted a noticeable interest in control systems community due to its numerous applications in areas such as formation flying of unmanned aerial vehicles, cooperative attitude control of spacecraft, rendezvous of mobile robots, unmanned underwater vehicles, traffic control, data network congestion control and routing. Generally, in any cooperative control of multi-agent systems one can find a set of locally sensed information, a communication network with limited bandwidth, a decision making algorithm, and a distributed computational capability. The ultimate goal of cooperative systems is to achieve consensus or synchronization throughout the team members while meeting all communication and computational constraints. The consensus problem involves convergence of outputs or states of all agents to a common value and it is more challenging when the agents are subjected to disturbances, measurement noise, model uncertainties or they are faulty. This dissertation deals with the above mentioned challenges and has developed methods to design distributed cooperative control and fault recovery strategies in multi-agent systems. Towards this end, we first proposed a transformation for Linear Time Invariant (LTI) multi-agent systems that facilitates a systematic control design procedure and make it possible to use powerful Lyapunov stability analysis tool to guarantee its consensus achievement. Moreover, Lyapunov stability analysis techniques for switched systems are investigated and a novel method is introduced which is well suited for designing consensus algorithms for switching topology multi-agent systems. This method also makes it possible to deal with disturbances with limited root mean square (RMS) intensities. In order to decrease controller design complexity, a iii method is presented which uses algebraic connectivity of the communication network to decouple augmented dynamics of the team into lower dimensional parts, which allows one to design the consensus algorithm based on the solution to an algebraic Riccati equation with the same order as that of agent. Although our proposed decoupling method is a powerful approach to reduce the complexity of the controller design, it is possible to apply classical pole placement methods to the transformed dynamics of the team to develop and obtain controller gains. The effects of actuator faults in consensus achievement of multi-agent systems is investigated. We proposed a framework to quantitatively study actuator loss-of-effectiveness effects in multi-agent systems. A fault index is defined based on information on fault severities of agents and communication network topology, and sufficient conditions for consensus achievement of the team are derived. It is shown that the stability of the cooperative controller is linked to the fault index. An optimization problem is formulated to minimize the team fault index that leads to improvements in the performance of the team. A numerical optimization algorithm is used to obtain the solutions to the optimal problem and based on the solutions a fault recovery strategy is proposed for both actuator saturation and loss-of-effectiveness fault types. Finally, to make our proposed methodology more suitable for real life scenarios, the consensus achievement of a multi-agent team in presence of measurement noise and model uncertainties is investigated. Towards this end, first a team of LTI agents with measurement noise is considered and an observer based consensus algorithm is proposed and shown that the team can achieve H∞ output consensus in presence of both bounded RMS disturbance input and measurement noise. In the next step a multi-agent team with both linear and Lipschitz nonlinearity uncertainties is studied and a cooperative control algorithm is developed. An observer based approach is also developed to tackle consensus achievement problem in presence of both measurement noise and model uncertainties.

Book Cooperative Control of Multi agent Systems

Download or read book Cooperative Control of Multi agent Systems written by He Cai and published by Springer Nature. This book was released on 2022-05-31 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of this book is a pair of cooperative control problems: consensus and cooperative output regulation. Its emphasis is on complex multi-agent systems characterized by strong nonlinearity, large uncertainty, heterogeneity, external disturbances and jointly connected switching communication topologies. The cooperative output regulation problem is a generalization of the classical output regulation problem to multi-agent systems and it offers a general framework for handling a variety of cooperative control problems such as consensus, formation, tracking and disturbance rejection. The book strikes a balance between rigorous mathematical proof and engineering practicality. Every design method is systematically presented together with illustrative examples and all the designs are validated by computer simulation. The methods presented are applied to several practical problems, among them the leader-following consensus problem of multiple Euler–Lagrange systems, attitude synchronization of multiple rigid-body systems, and power regulation of microgrids. The book gives a detailed exposition of two approaches to the design of distributed control laws for complex multi-agent systems—the distributed-observer and distributed-internal-model approaches. Mastering both will enhance a reader’s ability to deal with a variety of complex real-world problems. Cooperative Control of Multi-agent Systems can be used as a textbook for graduate students in engineering, sciences, and mathematics, and can also serve as a reference book for practitioners and theorists in both industry and academia. Some knowledge of the fundamentals of linear algebra, calculus, and linear systems are needed to gain maximum benefit from this book. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Multi agent Cooperative Control Via a Unified Optimal Control Approach

Download or read book Multi agent Cooperative Control Via a Unified Optimal Control Approach written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent rapid advances in computing, communication, sensing, and actuation, together with miniaturization technologies, have offered unprecedented opportunities to employ large numbers of autonomous vehicles (air, ground, and water) working cooperatively to accomplish a mission. Cooperative control of such multi-agent dynamical systems has potential impact on numerous civilian, homeland security, and military applications. Compared with single-agent control problems, new theoretical and practical challenges emerge and need to be addressed in cooperative control of multiagent dynamical systems, including but not limited to problem size, task coupling, limited computational resources at individual agent level, communication constraints, and the need for real-time obstacle/collision avoidance. In order to address these challenges, a unified optimal multi-agent cooperative control strategy is proposed to formulate the multi-objective cooperative control problem into one unified optimal control framework. Many cooperative behaviors, such as consensus, cooperative tracking, formation, obstacle/collision avoidance, or flocking with cohesion and repulsion, can be treated in one optimization process. An innovative inverse optimal control approach is utilized to include these cooperative objectives in derived cost functions such that a closed-form cooperative control law can be obtained. In addition, the control law is distributed and only depends on the local neighboring agents' information. Therefore, this new method does not demand intensive computational load and is easy for real-time onboard implementation. Furthermore, it is very scalable to large multi-agent cooperative dynamical systems. The closed-loop asymptotic stability and optimality are theoretically proved. Simulations based on MATLAB are conducted to validate the cooperative behaviors including consensus, Rendezvous, formation flying, and flocking, as well as the obstacle avoidance performance.

Book Cooperative Control of Multi agent Systems

Download or read book Cooperative Control of Multi agent Systems written by Zhenwei Liu and published by Springer Nature. This book was released on 2022-11-22 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph represents the outcome of research effort of the authors on scalable synchronization of large-scale multi-agent systems (MAS). Cooperative control of multi-agent systems has been growing in popularity and is highly interdisciplinary in recent years. The application of synchronization of MAS includes automobile systems, aerospace systems, multiple-satellite GPS, high-resolution satellite imagery, aircraft formations, highway traffic platooning, industrial process control with multiple processes, and more. Most of the proposed protocols in the literature for synchronization of MAS require some knowledge of the communication network such as bounds on the spectrum of the associated Laplacian matrix and the number of agents. These protocols suffer from scale fragility wherein stability properties are lost for large-scale networks or when the communication graph changes. In the past few years, the authors of this monograph have worked on developing scale-free protocol design for various cases of MAS problems. The key contribution of the monograph is to offer a scale-free design framework and provide scale-free protocols to achieve synchronization, delayed synchronization, and almost synchronization in the presence of input and communication delays, input saturation and external disturbances. The scale-free design framework solely is based on the knowledge of agent models and does not depend on information about the communication network such as the spectrum of the associated Laplacian matrix or size of the network. Drawing upon their extensive work in this area, the authors provide a thorough treatment of agents with higher-order dynamics, different classes of models for agents, and the underlying networks representing actions of the agents. The high technical level of their presentation and their rigorous mathematical approach make this monograph a timely and valuable resource that will fill a gap in the existing literature.

Book Cooperative Control and Connectivity Assessment of Multi Agent Systems Subject to Disturbance and Constrained Measurements

Download or read book Cooperative Control and Connectivity Assessment of Multi Agent Systems Subject to Disturbance and Constrained Measurements written by Mohammad Mehdi Asadi and published by . This book was released on 2015 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of designing distributed control strategies and developing connectivity metrics for multi-agent systems subject to constrained measurements and external disturbances is studied in this work. The constraint on the field of view (FOV) of the sensing devices used in multi-agent networks is ubiquitous in a wide range of applications. Such constraints have a fundamental impact on the overall performance of the network. The consensus and containment problems for a network of single-integrator agents are investigated, where each agent is assumed to have a sensor with a constrained angular FOV. The flocking problem for a network of double integrators with constrained FOVs is then investigated, where each agent is assumed to be equipped with relative distance and bearing angle sensors, with conic-shaped sensing areas of limited visibility. The angular velocity of the FOV of each agent along with the corresponding control inputs are designed such that the flocking objectives are achieved in a certain neighborhood of the desired configuration. A distributed consensus controller for a network of unicycle agents subject to external disturbances in input channels is also developed for two different cases of disturbances with known linear dynamics and unknown disturbances with known upper bounds. Then, a multi-agent system composed of underwater acoustic sensors is considered, where the network is modeled by a random graph. Different notions for the connectivity assessment of the expected graph of a random network are introduced, and efficient algorithms are developed to evaluate them. Simulations are provided throughout the work to support the theoretical findings.

Book Formation Control

Download or read book Formation Control written by Hyo-Sung Ahn and published by Springer. This book was released on 2019-03-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.