EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Flight Simulation Within the Frame of Multidisciplinary Optimization of Large Flexible Aircraft

Download or read book Flight Simulation Within the Frame of Multidisciplinary Optimization of Large Flexible Aircraft written by Armin Rommel and published by . This book was released on 2000 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: The disciplines flight mechanics I flight control and structural dynamics have to work closely together when large flexible aircraft, such as A340-600 and A3XX, are designed. The flight-control system has to be designed under the constraint that structural oscillation resonances or unacceptable levels of structural loads have to be avoided. Especially the integration of flight control and structural control requires multidisciplinary cooperation. In the potential conflict between handling qualities and minimal structural loads requirements the flight-control law parameters have to be optimized. This paper describes enhancements of real-time flight simulation in order to integrate the pilot into the control loop especially with respect to the effects of cockpit accelerations. The enhancements cover the coupling of rigid body motion and flexible modes in order to analyze the effects of neighboring frequencies, as well as the inclusion of simplified loads computation within the real-time simulation environment. Moreover, a cost-effective way of simulation-model development is presented. This covers model development and testing/validation on a fixed-base engineering flight simulator followed by a proven model transfer onto a six degrees of freedom motion simulator where intensive pilot-in-the-loop investigations can be carried out.

Book Principles of Flight Simulation

Download or read book Principles of Flight Simulation written by David Allerton and published by John Wiley & Sons. This book was released on 2009-10-27 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Flight Simulation is a comprehensive guide to flight simulator design, covering the modelling, algorithms and software which underpin flight simulation. The book covers the mathematical modelling and software which underpin flight simulation. The detailed equations of motion used to model aircraft dynamics are developed and then applied to the simulation of flight control systems and navigation systems. Real-time computer graphics algorithms are developed to implement aircraft displays and visual systems, covering OpenGL and OpenSceneGraph. The book also covers techniques used in motion platform development, the design of instructor stations and validation and qualification of simulator systems. An exceptional feature of Principles of Flight Simulation is access to a complete suite of software (www.wiley.com/go/allerton) to enable experienced engineers to develop their own flight simulator – something that should be well within the capability of many university engineering departments and research organisations. Based on C code modules from an actual flight simulator developed by the author, along with lecture material from lecture series given by the author at Cranfield University and the University of Sheffield Brings together mathematical modeling, computer graphics, real-time software, flight control systems, avionics and simulator validation into one of the faster growing application areas in engineering Features full colour plates of images and photographs. Principles of Flight Simulation will appeal to senior and postgraduate students of system dynamics, flight control systems, avionics and computer graphics, as well as engineers in related disciplines covering mechanical, electrical and computer systems engineering needing to develop simulation facilities.

Book A Multidisciplinary Optimization Framework for Flight Dynamics and Control Integration in Aircraft Design

Download or read book A Multidisciplinary Optimization Framework for Flight Dynamics and Control Integration in Aircraft Design written by Ruben Eduardo Perez and published by . This book was released on 2007 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging fly-by-wire and fly-by-light technologies increase the possibility of producing aircraft with excellent handling qualities and increased performance across the flight envelope. As a result, flight dynamics and control have become an important discipline in the design of air vehicles; where it is desired to take into account the dynamic characteristics and automatic control capabilities at the earliest stages of design. Traditionally, very limited considerations have been made at the early conceptual stage regarding this discipline. Some simplified methodologies used to size the control surfaces (i.e. horizontal and vertical tail surfaces) result in sub-optimal designs due to their inability to capture the interactions among the sizing of control surfaces, their control effectors (i.e. elevator and rudder) and it systems, and their effect on the general dynamic behaviour of the aircraft. Such designs have great limitations on control and handling, which lead to costly design modifications at the later stages of design. This research presents a methodology that enables flight dynamics and control integration at the conceptual design stage using multidisciplinary design optimization. It finds feasible aircraft configurations which meet specified mission requirements concurrently with the stability, control, and handling quality requirements at multiple flight conditions within the flight envelope. Furthermore, the proposed methodology exploits two different control integration strategies. The first one allows for individualized control system design at each flight phase, while the second one focuses on simultaneous stabilization and optimization using one single controller. The application of the methodology leads to designs that exploit active control interactions and have better performance and flying characteristics than the traditional sizing process over a broad range of aircraft sizes.

Book Flight Mechanics Modeling and Analysis

Download or read book Flight Mechanics Modeling and Analysis written by Jitendra R. Raol and published by CRC Press. This book was released on 2023-03-31 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flight Mechanics Modeling and Analysis comprehensively covers flight mechanics and flight dynamics using a systems approach. This book focuses on applied mathematics and control theory in its discussion of flight mechanics to build a strong foundation for solving design and control problems in the areas of flight simulation and flight data analysis. The second edition has been expanded to include two new chapters and coverage of aeroservoelastic topics and engineering mechanics, presenting more concepts of flight control and aircraft parameter estimation. This book is intended for senior undergraduate aerospace students taking Aircraft Mechanics, Flight Dynamics & Controls, and Flight Mechanics courses. It will also be of interest to research students and R&D project-scientists of the same disciplines. Including end-of-chapter exercises and illustrative examples with a MATLAB®-based approach, this book also includes a Solutions Manual and Figure Slides for adopting instructors. Features: • Covers flight mechanics, flight simulation, flight testing, flight control, and aeroservoelasticity. • Features artificial neural network- and fuzzy logic-based aspects in modeling and analysis of flight mechanics systems: aircraft parameter estimation and reconfiguration of control. • Focuses on a systems-based approach. • Includes two new chapters, numerical simulation examples with MATLAB®-based implementations, and end-of-chapter exercises. • Includes a Solutions Manual and Figure Slides for adopting instructors.

Book Flight Dynamic Modelling and Simulation of Large Flexible Aircraft

Download or read book Flight Dynamic Modelling and Simulation of Large Flexible Aircraft written by Gaétan Dussart and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The drive for aircraft efficiency and minimum environmental impact is requiring the aerospace industry to generate technologically innovative and highly integrated aircraft concepts. This has changed the approach towards conceptual design and highlighted the need for modular low fidelity aircraft simulation models that not only capture conventional flight dynamics but also provide insight into aeroservoelasticity and flight loads. The key aspects that drive the need for modularity are discussed alongside integration aspects related to coupling aerodynamic models, flight dynamic equations of motion and structural dynamic models. The details of developing such a simulation framework are presented and the utility of such a tool is illustrated through two test cases. The first case focuses on aircraft response to a gust that has a spanwise varying profile. The second investigates aircraft dynamics during control surface failure scenarios. The Cranfield Accelerated Aeroplane Loads Model (CA2LM) forms the basis of the presented discussion.

Book MEGADESIGN and MegaOpt   German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design

Download or read book MEGADESIGN and MegaOpt German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design written by Norbert Kroll and published by Springer. This book was released on 2012-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N., Fassbender, J. K. (Eds).: MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ?ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.

Book In Flight Simulators and Fly by Wire Light Demonstrators

Download or read book In Flight Simulators and Fly by Wire Light Demonstrators written by Peter G. Hamel and published by Springer. This book was released on 2018-07-25 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engi neers, but also other aeronautical scientists, engineers and project managers and historians as well. Students with a general interest in aeronautics as well as researchers in countries with growing aeronautical ambitions will also find the book useful. The omission of mathematical equations and in-depth theoretical discussions in favor of fresh discussions on innovative experiments, together with the inclusion of anecdotes and fascinating photos, make this book not only an enjoyable read, but also an important incentive to future research. The book, translated from the German by Ravindra Jategaonkar, is an extended and revised English edition of the book Fliegende Simulatoren und Technologieträger , edited by Peter Hamel and published by Appelhans in 2014.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Flight Simulation

    Book Details:
  • Author : Alfred T. Lee
  • Publisher :
  • Release : 2016-09-06
  • ISBN : 9781138246195
  • Pages : 150 pages

Download or read book Flight Simulation written by Alfred T. Lee and published by . This book was released on 2016-09-06 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a review and analysis of the relevant engineering and science supporting the design and use of advanced flight simulation technologies. It includes chapters reviewing key simulation areas such as visual scene, motion and sound simulations and a chapter analysing the effectivness of simulators.

Book Advanced Design Problems in Aerospace Engineering

Download or read book Advanced Design Problems in Aerospace Engineering written by Angelo Miele and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Design Problems in Aerospace Engineering, Volume 1: Advanced Aerospace Systems presents six authoritative lectures on the use of mathematics in the conceptual design of various types of aircraft and spacecraft. It covers the following topics: design of rocket-powered orbital spacecraft (Miele/Mancuso), design of Moon missions (Miele/Mancuso), design of Mars missions (Miele/Wang), design of an experimental guidance system with a perspective flight path display (Sachs), neighboring vehicle design for a two-stage launch vehicle (Well), and controller design for a flexible aircraft (Hanel/Well). This is a reference book of interest to engineers and scientists working in aerospace engineering and related topics.

Book Modeling Flexible Aircraft for Flight Control Design

Download or read book Modeling Flexible Aircraft for Flight Control Design written by E. C. Bekir and published by . This book was released on 1989 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trends to lower structural fraction of aircraft increase flexibility effects. Higher bandwidth control systems combined with these more flexible structures cause more aeroservoelastic interactions. Active, closed-loop control systems allow greater flexibility. To take advantage of this design possibility, an integrated ASE model is needed for conceptual and preliminary design stages of aircraft. This report seeks to define the equations of motion of a flexible aircraft from first principles to aid future discussions between experts in the specialties which make up ASE: aerodynamics, controls, and structures. This theoretical report documents the development of the equations, and states under what conditions the assumptions and approximations are accurate. It consists of 5 sections on different technical areas and a summary section: 1) Linearization of flexible aircraft hybrid-coordinate dynamic equations and inclusion of aerodynamic and gravitational loads; 2) Derivation of equations of motion and stability derivatives for a flexible aircraft vehicle; 3) Aerodynamics for aeroservoelasticity; 4) Model-order reduction for linear systems; and 5) Hydraulic actuator equations for aeroservoelastic modeling. Flight control systems; Servomechanisms. (edc).

Book Introduction to Nonlinear Aeroelasticity

Download or read book Introduction to Nonlinear Aeroelasticity written by Grigorios Dimitriadis and published by John Wiley & Sons. This book was released on 2017-03-10 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.

Book Investigation of the Helios Prototype Aircraft Mishap   Volume I Mishap Report

Download or read book Investigation of the Helios Prototype Aircraft Mishap Volume I Mishap Report written by Thomas E. Noll and published by Createspace Independent Pub. This book was released on 2012-11-08 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Helios Prototype vehicle was one of several remotely piloted aircraft funded and developed by NASA under the Environmental Research Aircraft and Sensor Technology (ERAST) project, and managed by NASA's Dryden Flight Research Center (DFRC). This vehicle was a proof-of-concept, propeller-driven, flying wing built and operated by AeroVironment, Inc. The vehicle consisted of two configurations. One configuration, designated HP01, was designed to operate at extremely high altitudes using batteries and high-efficiency solar cells spread across the upper surface of its 247-foot wingspan. On 13 August 2001, this aircraft configuration reached an altitude of 96,863 feet, a world record for sustained horizontal flight by a winged aircraft. The other configuration, designated HP03, was designed for long-duration flight. The plan was to use the solar cells to power the vehicle's electric motors and subsystems during the day and to use a modified commercial hydrogen–air fuel cell system for use during the night. The vehicle was also equipped with batteries as a backup source of power. The aircraft design used wing dihedral, engine power, elevator control surfaces, and a stability augmentation and control system to provide aerodynamic stability and control. On 26 June 2003, HP03-2 took off at 10:06am local time from the Navy's Pacific Missile Range Facility (PMRF) located on the island of Kauai, Hawaii. The aircraft was under the guidance of AeroVironment, Inc. (AV) ground-based mission controllers. At that time the environmental wind conditions appeared to be within an acceptable envelope, and consisted of a wind shadow over and offshore from PMRF, bounded to the north, south, and above by zones of wind shear and turbulence separating this region from the ambient easterly trade-wind flow. However, compared to previous solar-powered flights from PMRF, HP03-2 was subject to longer exposure to the low-level turbulence in the lee of Kauai due to the shallower climb out trajectory. The vehicle's longer exposure to Kauai's lee side turbulence and lower shear line penetration were superposed on what the Board now recognizes as greater airplane sensitivity to turbulence and may have been compounded by the apparent narrow corridor between the shear lines noted by the chase helicopter observer. At 10:22am and 10:24am, the aircraft encountered turbulence and the wing dihedral became much larger than normal and mild pitch oscillations began, but quickly damped out. At about 30 minutes into the flight, the aircraft encountered turbulence and morphed into an unexpected, persistent, high dihedral configuration. As a result of the persistent high dihedral, the aircraft became unstable in a very divergent pitch mode in which the airspeed excursions from the nominal flight speed about doubled every cycle of the oscillation. The aircraft's design airspeed was subsequently exceeded and the resulting high dynamic pressures caused the wing leading edge secondary structure on the outer wing panels to fail and the solar cells and skin on the upper surface of the wing to rip off. The aircraft impacted the ocean within the confines of the PMRF test range and was destroyed. The crash caused no other property damage or any injuries to personnel on the ground. Most of the vehicle structure was recovered except the hydrogen-air fuel cell pod and two of the ten engines, which sank into the ocean. The root causes of the mishap include: Lack of adequate analysis methods led to an inaccurate risk assessment of the effects of configuration changes leading to an inappropriate decision to fly an aircraft configuration highly sensitive to disturbances, and Configuration changes to the aircraft, driven by programmatic and technological constraints, altered the aircraft from a spanloader to a highly point-loaded mass distribution on the same structure significantly reducing design robustness and margins of safety.

Book Journal of Aircraft

Download or read book Journal of Aircraft written by and published by . This book was released on 1999 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Simulation of a Large Flexible Aircraft

Download or read book Modeling and Simulation of a Large Flexible Aircraft written by Dorothea Christina Czernik and published by . This book was released on 2002 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aeronautical Engineering

Download or read book Aeronautical Engineering written by and published by . This book was released on 1991 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of Flexible Aircraft

Download or read book Simulation of Flexible Aircraft written by Humayoon Abbasi and published by . This book was released on 2010 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study aims to improve flight simulation of flexible aircraft. More specifically, this thesis concentrates on comparing two flexible aircraft flight simulation models. Both modeling techniques considered use the same aircraft structural and aerodynamic data provided by the aircraft manufacturer. Simulation models were developed and tested using a number of control inputs in both longitudinal and lateral dimensions. Time history responses from the simulations were compared. The effect of increasing the flexibility of the aircraft model was also studied on both models. It was found that the two models produce very similar results for the original aircraft stiffness case. However, the lateral response of the two models diverges as the stiffness is lowered. A number of recommendations are made for further testing and research, based on the conclusions of the study.