EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Flexural and Shear Performance of High Strength Lightweight Reinforced Concrete Beams

Download or read book Flexural and Shear Performance of High Strength Lightweight Reinforced Concrete Beams written by Ahmed Naamah Almousawi and published by . This book was released on 2011 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Self Consolidating Concrete

Download or read book Self Consolidating Concrete written by Joseph Daczko and published by CRC Press. This book was released on 2012-03-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A very interesting and useful book for all the different practitioners in the concrete industry. Each necessary step is thoroughly dealt with and explained in a nice and pedagogic way." Peter Billberg, Swedish Cement and Concrete Research Institute (CBI)"Quite comprehensive and with a narrative style at the practitioner level." Lloyd Keller, Direc

Book Structural Performance of High Strength Reinforced Concrete Beams Built with Synthetic Fibers

Download or read book Structural Performance of High Strength Reinforced Concrete Beams Built with Synthetic Fibers written by Roukaya Bastami and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the results of a research program examining the effects of macro-synthetic fibers on the shear and flexural behaviour of high-strength concrete (HSC) beams subjected to static and blast loads. As part of the study, a series of seventeen fiber-reinforced HSC beams are built and tested under either quasi-static four-point bending or simulated blast loads using a shock-tube. The investigated test parameters include the effects of: macro-synthetic fibers, fiber hybridization, combined use of fibers and stirrups and longitudinal steel ratio and type. The results show that under slowly applied loads, the provision of synthetic fibers improves the shear capacity of the beams by allowing for the development of yield stresses in the longitudinal reinforcement, while the combined use of synthetic fibers and stirrups is found to improve flexural ductility and cracking behaviour. The results also show that the provision of synthetic fibers delays shear failure in beams tested under blast pressures, with improved control of blast-induced displacements and increased damage tolerance in beams designed with combined fibers and stirrups. The study also shows that the use of hybrid fibers was capable of effectively replacing transverse reinforcement under both loading types, allowing for ductile flexural failure. Moreover, the use of synthetic fibers was effective in better controlling crushing and spalling in beams designed with Grade 690 MPa high-strength reinforcement. Furthermore, the results demonstrate that synthetic fibers can possibly be used to relax the stringent detailing required by modern blast codes by increasing the transverse reinforcement hoop spacing without compromising performance. As part of the analytical study, the load-deflection responses (resistance functions) of the beams are predicted using sectional (moment-curvature) analysis, as well as more advanced 2D finite element modelling. Dynamic resistance functions developed using both approaches, and incorporating material strain-rate effects, are then used to conduct non-linear single-degree-of-freedom (SDOF) analyses of the blast-tested beams. In general, the results show that both methods resulted in reasonably accurate predictions of the static and dynamic experimental results.

Book Response of Ultra High Performance Fiber Reinforced Concrete Beams Under Flexure and Shear

Download or read book Response of Ultra High Performance Fiber Reinforced Concrete Beams Under Flexure and Shear written by Roya Solhmirzaei and published by . This book was released on 2021 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra high performance concrete (UHPC) is an advanced cementitious material made with low water to binder ratio and high fineness admixtures, and possesses a unique combination of superior strength, durability, corrosion resistance, and impact resistance. However, increased strength of UHPC results in a brittle behavior. To overcome this brittle behavior of UHPC and improve post cracking response of UHPC, steel fibers are often added to UHPC and this concrete type is designated as Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Being a relatively new construction material, there are limited guidelines and specifications in standards and codes for the design of structural members fabricated using UHPFRC. To develop a deeper understanding on the behavior of UHPFRC flexural members, seven beams made of UHPFRC are tested under different loading conditions. The test variables include level of longitudinal reinforcement, type of loading (shear and flexure), and presence of shear reinforcement. Further, a finite element based numerical model for tracing structural behavior of UHPFRC beams is developed in ABAQUS. The developed model can account for the nonlinear material response of UHPFRC and steel reinforcement in both tension and compression, as well as bond between concrete and reinforcing steel, and can trace the detailed response of the beams in the entire range of loading. This model is validated by comparing predicted response parameters including load-deflection, load-strain, and crack propagation against experimental data obtained from tests on UHPFRC beams with different material characteristics and under different loading configurations. The validated model is applied to conduct a set of parametric studies to quantify the effect of different parameters on structural response of UHPFRC beams, including the contribution of stirrups and concrete to shear capacity of beams, to explore feasibility of removing the need for shear reinforcement in UHPFRC beams. Results from experiments and numerical model reveal that UHPFRC beams exhibit distinct cracking pattern characterized by the propagation of multiple micro cracks followed by widening of a single crack leading to failure. Also, UHPFRC beams exhibit high flexural and shear capacity, as well as ductility due to high compressive and tensile strength of UHPFRC and fiber bridging developing at the crack surfaces that leads to strain hardening in UHPFRC after cracking. Thus, absence of shear reinforcement in UHPFRC beams does not result in brittle failure, even under dominant shear loading. Data from the conducted experiments as well as those reported in literature is utilized to develop a machine learning (ML) framework for predicting structural response of UHPFRC beams. On this basis, a comprehensive database on reported tests on UHPFRC beams with different geometric, fiber properties, loading and material characteristics is collected. This database is then analyzed utilizing different ML algorithms, including support vector machine, artificial neural networks, k-nearest neighbor, support vector machine regression, and genetic programing, to develop a data-driven computational framework for predicting failure mode and flexural and shear capacity of UHPFRC beams. Predictions obtained from the proposed framework are compared against the values obtained from design equations in codes, and also results from full-scale tests to demonstrate the reliability of the proposed approach. The results clearly indicate that the proposed ML framework can effectively predict failure mode and flexural and shear capacity of UHPFRC beams with varying reinforcement detailing and configurations. The research presented in this dissertation contributes to the development of preliminary guidance on evaluating capacity of UHPFRC beams under different configurations.

Book Fundamentals of High Performance Concrete

Download or read book Fundamentals of High Performance Concrete written by Edward G. Nawy and published by John Wiley & Sons. This book was released on 2000-11-16 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: High performance concrete is a key element in virtually all-large construction projects, from tall office and residential buildings to bridges, tunnels and roadways. The fully updated Second Edition helps professionals to understand the performance capabilities of these construction materials when selecting the type of concrete to use for particular projects. The author is one of the worlds acknowledged experts on high performance concrete.

Book Flexural Behaviour of High Strength Steel Fibre Normal and Lightweight Concrete Beams

Download or read book Flexural Behaviour of High Strength Steel Fibre Normal and Lightweight Concrete Beams written by Mohamed Abdulhakim Zurgani and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was conducted to investigate the flexural behaviour of high strength normal and lightweight reinforced concrete beams with steel fibres. Three different mixtures were developed for each type of concrete with three different steel fibre volume ratios. The target compressive strength was 85 MPa. Material and structural experimental programs were performed. In the material investigation, twenty four prisms with dimensions of 100 mm × 100 mm × 400 mm and one hundred and twenty cylinders with dimensions of 100 mm × 200 mm were cast, cured and tested to determine the mechanical properties for all different mixtures. The investigated mechanical properties included the compressive strength, splitting tensile strength, modulus of rupture and flexural toughness. In the structural investigation, a series of six high strength lightweight aggregate (LWAC) concrete reinforced beams and six high strength normal weight (NWC) reinforced concrete beams were cast and tested. The beams were 200 mm × 400 mm × 3200 mm and were simply supported on a clear span of 2900 mm. The main variables in this study were the concrete type (normal weight concrete and light weight aggregate concrete), steel fibre volume ratio, (0 %, 0.375%, 0.75%), and the longitudinal reinforcement ratio, (0.85%, 1.50%). The structural behaviour of the test beams was examined in terms of load-deflection behaviour, steel reinforcement strain, concrete strain, crack pattern, crack width, crack spacing, mode of failure and ultimate moment capacity. The test results revealed that the addition of steel fibres to high strength lightweight or normal weight concrete improved the mechanical properties. The compressive strength, splitting tensile strength and the modulus of rupture of fibrous LWAC and NWC concrete increased compared to the plain concrete. Adding steel fibre to both high strength normal and lightweight concrete increased both cracked and un-cracked stiffness in addition to increasing the ultimate flexural capacity. The steel fibres also enhanced the cracking behaviour for both NWC and LWAC beams, reduced the crack widths and increased the number of the cracks for both type of concrete. The LWAC beams developed more cracks but less cracks width compared to their identical NWC beams. The ductility indexes of fibrous and non-fibrous NWC beams were higher than the ductility indexes measured for the corresponding LWAC beams. For all fibre reinforced NWC and LWAC beams, CSA A23.3-14, ACI 318-08, EC2-04, and EC2-91 codes overestimated the maximum crack width due to the fact that these models do not consider the presence of steel fibres. The Rilem TC162-TDF was found to accurately predict the maximum crack width of fibrous NWC beams. However, the model was seen to be conservative when predicting the maximum crack width for fibrous LWAC beams.

Book Performance of Lightweight Concrete Beams Strengthened with GFRP

Download or read book Performance of Lightweight Concrete Beams Strengthened with GFRP written by Bassam Abdelsalam Abdelsalam and published by LAP Lambert Academic Publishing. This book was released on 2019-10-24 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authors: Bassam A. Abdelsalam, Ashraf M. A. Heniegal, Esraa E. Ali, Walid S. El-sayed.Lightweight concrete (LWC) has been successfully used in constructions on a large scale for many years from conventional structures such as long-span bridges, high-rise buildings, buildings where soil conditions are poor to highly specialized structures such as floating structures and offshore platforms. In some LWC only coarse lightweight aggregate (LWA) are used, whereas, in others, both coarse and fine LWA are used. On the other side High-performance concrete (HPC) exceeds the properties and constructability of normal concrete. Normal and special materials are used to make these specially designed concretes that must meet a combination of performance requirements. Special mixing, placing, and curing practices may be needed to produce and handle HPC. An investigation to evaluate the structural behavior of lightweight reinforced concrete beams with and without strengthening by one, two and three layers of glass fiber reinforced polymer laminates. In the experimental work, the fresh properties, hardened properties and the durability tests of lightweight concrete were carried out.

Book Shear Strength of Lightweight Reinforced Concrete Beams

Download or read book Shear Strength of Lightweight Reinforced Concrete Beams written by Portland Cement Association. Development Department and published by . This book was released on 1958 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High performance high strength Lightweight Concrete for Bridge Girders and Decks

Download or read book High performance high strength Lightweight Concrete for Bridge Girders and Decks written by Thomas E. Cousins and published by Transportation Research Board. This book was released on 2013 with total page 91 pages. Available in PDF, EPUB and Kindle. Book excerpt: "TRB's National Cooperative Highway Research Program (NCHRP) Report 733: High-Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks presents proposed changes to the American Association of State Highway and Transportation Officials' Load and Resistance Factor Design (LRFD) bridge design and construction specifications to address the use of lightweight concrete in bridge girders and decks. The proposed specifications are designed to help highway agencies evaluate between comparable designs of lightweight and normal weight concrete bridge elements so that an agency's ultimate selection will yield the greatest economic benefit. The attachments contained in the research agency's final report provide elaborations and detail on several aspects of the research. Attachments A and B provide proposed changes to AASHTO LRFD bridge design and bridge construction specifications, respectively; these are included in the print and PDF version of the report. Attachments C through R are available for download below. Attachments C, D, and E contain a detailed literature review, survey results, and a literature summary and the approved work plan, respectively. Attachment C; Attachment D ; Attachment E; Attachments F through M provide details of the experimental program that were not able to be included in the body of this report. Attachment F; Attachment G; Attachment H; Attachment I; Attachment J; Attachment K; Attachment L; Attachment M. Attachments N through Q present design examples of bridges containing lightweight concrete and details of the parametric study. Attachment N; Attachment O; Attachment P; Attachment Q. Attachment R is a detailed reference list."--Publication information.

Book Oil Palm Shell

    Book Details:
  • Author : Mohammad Abdul Mannan
  • Publisher : Nova Science Publishers
  • Release : 2017
  • ISBN : 9781536109009
  • Pages : 332 pages

Download or read book Oil Palm Shell written by Mohammad Abdul Mannan and published by Nova Science Publishers. This book was released on 2017 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author Biography: Dr. Mohammad Abdul Mannan was born at a simple family of a small village, Aktarpur, Rangiarpota, Jibonnagar, Chuadanga, Bangladesh. He has obtained B.Sc. (Civil Engineering) degree with first class, MSc in Civil Engineering and PhD in Concrete technology. He has started carrier as lecturer at BIT Rajshahi (now RUET), Bangladesh followed by AJP consulting firm, then Universiti Malaysia Sabah (UMS) and is now a Professor of Department of Civil Engineering, Universiti Malaysia Sarawak, Malaysia. He is the inventor of few construction products. Based on 30 years of experience in teaching, professional practice and research, his vision is to be excellence in research on Innovative Construction Material and Structure. Book Description: Due to a high demand in construction and furniture industries worldwide, natural resources such as stones and wood as non-renewable resources are being depleted. Thus, researchers are focusing on renewable resources as alternative materials. As such, the utilisation of abundant solid wastes and byproducts, which are discharged from agriculture, industry and municipalities present an alternative to the conventional materials for the construction and furniture industries. These solid wastes and byproducts, when properly processed have shown to be effective and can readily meet design specifications. Agricultural solid wastes from oil palm distributors such as Oil Palm Shell (OPS) and Empty Fruit Bunch (EFB), which are abundant in agro-based countries, present an interesting alternative to the conventional aggregate in lightweight concrete and artificial plank production, respectively. At present, palm oil producing countries are Barkina Faso, Benin, Burundi, Cameroon, Central African Republic, Colombia, Costa Rica, C�te d'Ivoire, Democratic Republic of Congo, Ecuador, Equatorial Guinea, Gabon, Gambia, Ghana, Guinea Bissau, Guinea, Honduras, India, Indonesia, Liberia, Malaysia, Mexico, Nigeria, Papua New Guinea, Peru, Republic of Congo, Senegal, Sierra Leone, Tanzania, Thailand, Togo, Uganda, Venezuela and others. In Malaysia, oil palm plantations cover over 5 million hectares, and annual production of OPS as solid waste from 450 oil palm mills is more than 6 million tons. This large amount of OPS as a renewable green aggregate can contribute to overcoming the over dependence on depletable resources for concrete production. The civil engineering projects are of a larger scale; they need sustainable materials in order to gain a greater momentum of growth. The major technical characteristics of OPS solid waste must be primarily understood before each particular use. Therefore, there is a need to highlight the importance of OPS to be used in the construction industry.

Book Shear Strengthening of Reinforced Concrete Beams Using Fiber Reinforced Polymer Wraps

Download or read book Shear Strengthening of Reinforced Concrete Beams Using Fiber Reinforced Polymer Wraps written by and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies have shown that fiber-reinforced polymer (FRP) wraps can improve the capacity of rectangular beam sections. This technology has potential application to highway bridges that may have less shear capacity than flexural capacity or require added load capacity to handle current traffic demands. Compared with steel repair materials FRP offers several benefits, such as corrosion resistance and field-workability. Several studies have investigated the use of externally bonded FRP sheets to improve strength and stiffness of reinforced concrete (R/C) beams, but most have addressed flexural strength, not shear. The objective of the current study was to test the effectiveness of FRP wraps in repairing full-scale prestressed high-strength concrete joists fabricated with insufficient shear reinforcement. Four prestressed high-strength concrete tee-beams (joists) with integral web openings were tested. Two of the joists were repaired or upgraded with FRP wraps to improve shear performance and two were used as control specimens. Performance criteria were specified, and standard structural engineering practice for shear design was employed to determine wrap thickness. The results of the tests indicate that significant increases in the shear strength of R/C beams with insufficient shear capacity can be achieved by proper application of FRP wraps.

Book High Performance High Strength Concrete

Download or read book High Performance High Strength Concrete written by Balamuthu Vijaya Rangan and published by . This book was released on 1998 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultra High Performance Concrete UHPC

Download or read book Ultra High Performance Concrete UHPC written by Ekkehard Fehling and published by John Wiley & Sons. This book was released on 2015-04-20 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications.

Book Advances in Civil Engineering and Building Materials

Download or read book Advances in Civil Engineering and Building Materials written by Shuenn-Yih Chang and published by CRC Press. This book was released on 2012-10-31 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Civil Engineering and Building Materials presents the state-of-the-art development in: - Structural Engineering - Road & Bridge Engineering- Geotechnical Engineering- Architecture & Urban Planning- Transportation Engineering- Hydraulic Engineering - Engineering Management- Computational Mechanics- Construction Technology- Buildi

Book Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete

Download or read book Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete written by Pedro Serna and published by Springer. This book was released on 2016-12-23 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first publication ever focusing strictly on the creep behaviour in cracked sections of Fibre Reinforced Concrete (FRC). These proceedings contain the latest scientific papers about new testing methodologies, results and conclusions of multiple experimental campaigns and recommendations about significant factors of long-term behaviour, experiences from more than ten years of creep testing and some reflections about future perspectives on this topic. This book is an essential reference for all researchers of creep behaviour on FRC. This volume is the result of the efforts of the RILEM TC 261-CCF, that has been working since 2014 to develop standardized methodologies and guidelines to compare results from different laboratories and get a better understanding of the significant parameters related to creep of FRC.

Book PRO 30  4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites  HPFRCC 4

Download or read book PRO 30 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites HPFRCC 4 written by Antoine E. Naaman and published by RILEM Publications. This book was released on 2003 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: