EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures

Download or read book First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion of optical phonons, and (2) by developing a suite of numerical algorithms for solution of the BTE for phonons. The suite of numerical algorithms includes Monte Carlo techniques and deterministic techniques based on the Discrete Ordinates Method and the Ballistic-Diffusive approximation of the BTE. These methods were applied to calculation of thermal conductivity of silicon thin films, and to simulate heat conduction in multi-dimensional structures. In addition, thermal transport in silicon nanowires was investigated using two different first principles methods. One was to apply the Green-Kubo formulation to an equilibrium system. The other was to use Non-Equilibrium Molecular Dynamics (NEMD). Results of MD simulations showed that the nanowire cross-sectional shape and size significantly affects the thermal conductivity, as has been found experimentally. In summary, the project clarified the role of various phonon modes - in particular, optical phonon - in non-equilibrium transport in silicon. It laid the foundation for the solution of the BTE in complex three-dimensional structures using deterministic techniques, paving the way for the development of robust numerical tools that could be coupled to existing device simulation tools to enable coupled electro-thermal modeling of practical electronic/optoelectronic devices. Finally, it shed light on why the thermal conductivity of silicon nanowires is so sensitive to its cross-sectional shape.

Book Thermal Energy At The Nanoscale

Download or read book Thermal Energy At The Nanoscale written by Timothy S Fisher and published by World Scientific Publishing Company. This book was released on 2013-10-10 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons — are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.

Book Thermal Energy at the Nanoscale

Download or read book Thermal Energy at the Nanoscale written by Timothy S. Fisher and published by World Scientific Publishing Company. This book was released on 2014 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons -- are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.

Book Studying Phonon Mean Free Paths at the Nanoscale

Download or read book Studying Phonon Mean Free Paths at the Nanoscale written by Lingping Zeng and published by . This book was released on 2016 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat conduction in semiconductors and dielectrics involves cumulative contributions from phonons with different frequencies and mean free paths (MFPs). Knowing the phonon MFP distribution allows us to gain insight into the fundamental microscopic transport physics and has important implications for many energy applications. The key metric that quantifies the relative contributions of different phonon MFPs to thermal conductivity is termed thermal conductivity accumulation function. In this thesis, we advance a thermal conductivity spectroscopy technique based upon experimental observation of non-diffusive thermal transport using wire grid linear polarizer in conjunction with time-domain thermoreflectance (TDTR) pump-and-probe measurement setup. Consistent algorithm based on solution from the phonon Boltzmann transport equation (BTE) is also developed to approximately extract the thermal conductivity accumulation functions in materials studied. The heat flux suppression function appropriate for the experimental sample geometry relates the measured apparent thermal conductivities to the material's phonon MFP distributions. We develop a multi-dimensional thermal transport model based on the gray phonon BTE to find the suppression function relevant to our spectroscopy experiment. The simulation results reveal that the suppression function depends upon both the heater size and the heater array period. We also find that the suppression function depends significantly on the location of the temperature measurement. Residual suppression effect is observed for finite filling fractions (ratio of heater size to heater array period) due to the transport coupling in the underlying substrate induced by the neighboring heaters. Prior phonon MFP spectroscopy techniques suffer from one or several of the following limitations: (1) diffraction limited to micrometer lengthscales by focusing optics, (2) applying only to transparent materials, or (3) involving complex micro-fabrications. We explore an alternate approach here using wire grid linear polarizer in combination with TDTR measurement. The wire grid polarizer is designed with sub-wavelength gaps between neighboring heaters to prevent direct photo-excitation in the substrate while simultaneously functioning as heaters and thermometers during the measurement. The spectroscopy technique is demonstrated in crystalline silicon by studying length-dependent thermal transport across a range of lengthscales and temperatures. We utilize the calculated heat flux suppression functions and the measured size-dependent effective thermal conductivities to reconstruct the phonon MFPs in silicon and achieve reasonably good agreement with calculation results from first principle density function theory. Knowledge of phonon MFP distributions in thermoelectric materials will help design nanostructures to further reduce lattice thermal conductivity to achieve better thermoelectric performance in the next-generation thermoelectric devices. We apply the developed wire grid polarizer spectroscopy technique to study phonon MFP distributions in two thermoelectric materials: Nb0.95 Ti0.05FeSb and boron-doped nanocrystalline Si80Ge20B. We find that the dominant phonon MFPs that contribute to thermal conductivity in those two materials are in the a few tens to a few hundreds of nanometers. The measurement results also shed light on why nanostructuring is an effective approach to scattering phonons and improve the thermoelectric behavior.

Book Phonon Focusing and Phonon Transport

Download or read book Phonon Focusing and Phonon Transport written by Igor Gaynitdinovich Kuleyev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-06-08 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to the investigation of physical processes that govern the phonon transport in bulk and nanoscale single-crystal samples of cubic symmetry. Special emphasis is given to the study of phonon focusing in cubic crystals and its influence on the boundary scattering and lattice thermal conductivity of bulk materials and nanostructures.

Book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials

Download or read book Nanoscale Thermal and Thermoelectric Energy Transport in Crystalline and Disordered Materials written by Jiawei Zhou and published by . This book was released on 2019 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy transport provides the fundamental basis for operation of devices from transistors to solar cells. Despite past theories that successfully illustrate the principles behind the energy transport based on solid state physics, the microscopic details of the energy transport are not always clear due to the lack of tool to quantify the contribution from different degrees of freedom. Recent progress in first principles computations and development in optical characterization has offered us new ways to understand the energy transport at the nanoscale in a quantitative way. In this thesis, by leveraging these techniques, we aim to providing a detailed understanding of thermal and thermoelectric energy transport in crystalline and disordered materials, especially about how the energy transport depends on atomistic level details such as chemical bondings. Specifically, we will discuss three examples. 1) Electron transport in semiconductors: how electrons propagate as they interact with lattice and impurities. 2) Interaction between charge and heat: how the free carriers have an impact on the heat dissipation in semiconductors 3) Heat conduction in polymers: how the heat transfer in an amorphous system depends on its molecular structures. In the case of electron transport, we developed and applied first principles simulation to show that a large electron mobility can benefit from symmetry-protected non-bonding orbitals. Such orbitals result in weak electron-lattice coupling that explains the unusually large power factors in half-Heusler materials - a good thermoelectric material system. By devising an optical experiment to probe the ultrafast thermal decay, we quantified the effect of electron-phonon interaction on the thermal transport. Our results show that the thermal conductivity can be significantly affected by the free carriers. Lastly, we built a theoretical model to understand the heat conduction in amorphous polymers, and used this knowledge to design materials that are heat-conducting yet soft. These understandings will potentially facilitate discovery of new material systems with beneficial charge and heat transport characteristic.

Book The Physics of Phonons

    Book Details:
  • Author : Gyaneshwar P. Srivastava
  • Publisher : Routledge
  • Release : 2019-07-16
  • ISBN : 1351409557
  • Pages : 438 pages

Download or read book The Physics of Phonons written by Gyaneshwar P. Srivastava and published by Routledge. This book was released on 2019-07-16 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

Book Thermal Energy

Download or read book Thermal Energy written by Yatish T. Shah and published by CRC Press. This book was released on 2018-01-12 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.

Book An Enhanced Statistical Phonon Transport Model for Nanoscale Thermal Transport and Design

Download or read book An Enhanced Statistical Phonon Transport Model for Nanoscale Thermal Transport and Design written by Michael P. Medlar and published by . This book was released on 2021 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Managing thermal energy generation and transfer within the nanoscale devices (transistors) of modern microelectronics is important as it limits speed, carrier mobility, and affects reliability. Application of Fourier’s Law of Heat Conduction to the small length and times scales associated with transistor geometries and switching frequencies doesn’t give accurate results due to the breakdown of the continuum assumption and the assumption of local thermodynamic equilibrium. Heat conduction at these length and time scales occurs via phonon transport, including both classical and quantum effects. Traditional methods for phonon transport modeling are lacking in the combination of computational efficiency, physical accuracy, and flexibility. The Statistical Phonon Transport Model (SPTM) is an engineering design tool for predicting non-equilibrium phonon transport. The goal of this work has been to enhance the models and computational algorithms of the SPTM to elevate it to have a high combination of accuracy and flexibility. Four physical models of the SPTM were enhanced. The lattice dynamics calculation of phonon dispersion relations was extended to use first and second nearest neighbor interactions, based on published interatomic force constants computed with first principles Density Functional Theory (DFT). The computation of three phonon scattering partners (that explicitly conserve energy and momentum) with the inclusion of the three optical phonon branches was applied using scattering rates computed from Fermi’s Golden Rule. The prediction of phonon drift was extended to three dimensions within the framework of the previously established methods of the SPTM. Joule heating as a result of electron-phonon scattering in nanoscale electronic devices was represented using a modal specific phonon source that can be varied in space and time. Results indicate the use of first and second nearest neighbor lattice dynamics better predicted dispersion when compared to experimental results and resulted in a higher fidelity representation of phonon group velocities and three phonon scattering partners in an anisotropic manner. Three phonon scattering improvements resulted in enhanced fidelity in the prediction of phonon modal decay rates across the wavevector space and thus better representation of non-equilibrium behavior. Comparisons to the range of phonon transport modeling approaches from literature verify that the SPTM has higher phonon fidelity than Boltzmann Transport Equation and Monte Carlo and higher length scale and time scale fidelity than Direct Atomic Simulation. Additional application of the SPTM to both a 1-d silicon nanowire transistor and a 3-d FinFET array transistor in a transient manner illustrate the design capabilities. Thus, the SPTM has been elevated to fill the gap between lower phonon fidelity Monte Carol (MC) models and high fidelity, inflexible direct quantum simulations (or Direct Atomic Simulations (DAS)) within the field of phonon transport modeling for nanoscale electronic devices. The SPTM has produced high fidelity device level non-equilibrium phonon information in a 3-d, transient manner where Joule heating occurs. This information is required due to the fact that effective lattice temperatures are not adequate to describe the local thermal conditions. Knowledge of local phonon distributions, which can’t be determined from application of Fourier’s law, is important because of effects on electron mobility, device speed, leakage, and reliability."--Abstract.

Book Observation and Manipulation of the Wave Nature of Phonon Thermal Transport Through Superlattices

Download or read book Observation and Manipulation of the Wave Nature of Phonon Thermal Transport Through Superlattices written by Maria Nickolayevna Luckyanova and published by . This book was released on 2015 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the scale of electronic, photonic, and energy harvesting devices has shrunk, the importance of understanding nanoscale thermal transport has grown. In this thesis, we investigate thermal transport through superlattices (SLs), periodic layers of thin films, to better understand thermal conduction at these small scales. The classical picture of nanoscale thermal transport invokes a picture of diffusive scattering of phonons, or lattice vibrations, at the interfaces and boundaries in structures. This picture has been used to explain experimental thermal transport results for a wide variety of nanostructures. Despite the omnipresence of this particle-transport picture of phonon heat conduction, the community has continuously sought an experimental demonstration of the wave regime of thermal transport in nanostructures. In this thesis, we report the first experimental observations of the regimes of coherent phonon transport and phonon localization in thermal conduction through nanostructures. First, in order to better understand thermal transport through SLs, we present measurements of anisotropic thermal conductivity in the same GaAs/AlAs SLs using two different optical techniques, time-domain thermoreflectance (TDTR) for cross-plane measurements, and transient thermal grating (TTG) for in-plane measurements. The results of this study lend insight into the role of interface scattering, previously understood to be the dominant scattering mechanism in these structures, in SLs. The experimentally measured thermal conductivities are compared to results from first principles simulations, and the agreement between the two helps to validate atomistic simulation techniques of transport through SLs. The role of coherent phonon transport is explored by using the TDTR technique to measure the thermal conductivities of SLs with the same period thicknesses but varying numbers of periods. This experimental approach is a departure from traditional studies of SLs where period thicknesses are varied while the SL is grown to be thermally thick. This shift in the experimental paradigm allows us to explore previously elusive phenomena in nanoscale thermal transport. Combined with first principles and Green's functions simulations, the results of these experiments are the first experimental observation of coherent phonon transport through SLs. Finally, experiments on GaAs/AlAs SLs with varying concentrations of ErAs nanodots at the interfaces show the ability to destroy this phonon coherence. The thermal conductivities of such SLs with constant period thicknesses and varying numbers of periods show an overall reduction in thermal conductivity with increasing ErAs concentration. In addition, at low temperatures samples with ErAs at the interfaces show a maximum in thermal conductivity with shorter sample length and then a drop-off for longer samples. These results are signatures of phonon localization, a previously unobserved thermal transport phenomenon.

Book Thermal Management of Gallium Nitride Electronics

Download or read book Thermal Management of Gallium Nitride Electronics written by Marko Tadjer and published by Woodhead Publishing. This book was released on 2022-07-13 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Gallium Nitride Electronics outlines the technical approaches undertaken by leaders in the community, the challenges they have faced, and the resulting advances in the field. This book serves as a one-stop reference for compound semiconductor device researchers tasked with solving this engineering challenge for future material systems based on ultra-wide bandgap semiconductors. A number of perspectives are included, such as the growth methods of nanocrystalline diamond, the materials integration of polycrystalline diamond through wafer bonding, and the new physics of thermal transport across heterogeneous interfaces. Over the past 10 years, the book's authors have performed pioneering experiments in the integration of nanocrystalline diamond capping layers into the fabrication process of compound semiconductor devices. Significant research efforts of integrating diamond and GaN have been reported by a number of groups since then, thus resulting in active thermal management options that do not necessarily lead to performance derating to avoid self-heating during radio frequency or power switching operation of these devices. Self-heating refers to the increased channel temperature caused by increased energy transfer from electrons to the lattice at high power. This book chronicles those breakthroughs. Includes the fundamentals of thermal management of wide-bandgap semiconductors, with historical context, a review of common heating issues, thermal transport physics, and characterization methods Reviews the latest strategies to overcome heating issues through materials modeling, growth and device design strategies Touches on emerging, real-world applications for thermal management strategies in power electronics

Book Nanoscale Energy Transport and Conversion

Download or read book Nanoscale Energy Transport and Conversion written by Gang Chen and published by Oxford University Press. This book was released on 2005-03-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Book Length Scale Dependent Phonon Interactions

Download or read book Length Scale Dependent Phonon Interactions written by Subhash L. Shindé and published by Springer Science & Business Media. This book was released on 2013-10-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phonon transport across and along arbitrary interfaces, the scattering of phonons with crystal defects, interface roughness and mass-mixing, delocalized electrons/collective electronic excitations, and solid acoustic vibrations when these occur in structures with small physical dimensions. This book provides a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Theories and measurements of phonon interactions are described in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields.

Book A Statistical Phonon Transport Model for Thermal Transport in Crystalline Materials from the Diffuse to Ballistic Regime

Download or read book A Statistical Phonon Transport Model for Thermal Transport in Crystalline Materials from the Diffuse to Ballistic Regime written by Thomas W. Brown and published by . This book was released on 2012 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Phonon transport in micro- nanoscale crystalline materials can be well modeled by the Boltzmann transport equation (BTE). The complexities associated with solving the BTE have led to the development of various numerical models to simulate phonon transport. These models have been applied to predict thermal transport from the diffuse to ballistic regime. While some success using techniques such as the Monte Carlo method has been achieved, there are still a significant number of approximations related to the intricacies of phonon transport that must be more accurately modeled for better predictions of thermal transport at reduced length scales. The objective of the present work is to introduce a Statistical Phonon Transport (SPT) model for simulating thermal transport in crystalline materials from the diffuse to ballistic regime. The SPT model provides a theoretically more realistic treatment of phonon transport physics by eliminating some of the common approximations utilized by other numerical modeling techniques. The SPT model employs full anisotropic dispersion. Phonon populations are modeled without the use of scaling factors or pseudo-random number generation. Three-phonon scattering is rigorously enforced following the selection rules of energy and pseudo-momentum. The SPT model provides a flexible framework for incorporating various phonon scattering mechanisms and models. Results related to the determination of allowable three-phonon interactions are presented along with several three-phonon scattering models. Steady-state and transient thermal transport results for silicon from the diffuse to ballistic regimes are presented and compared to analytical and experimental results. Recommendations for future work related to increasing the robustness of the SPT model as well as utilizing the SPT model to predict thermal transport in practical applications are given."--Abstract.

Book Inorganic Thermoelectric Materials

Download or read book Inorganic Thermoelectric Materials written by Anthony V Powell and published by Royal Society of Chemistry. This book was released on 2021-11-24 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelectric devices convert a heat flux directly into electrical power. They afford opportunities to achieve efficiency savings in a variety of applications, through the conversion of otherwise waste heat into useful electrical energy. Operated in reverse mode, they provide effective thermal management in areas ranging from cooling of electronic components to battery conditioning in electric vehicles. Implementation of thermoelectric technology requires materials with improved performance and stability, containing readily-available and inexpensive elements. A range of thermoelectric materials for use in different temperature regimes has emerged. Knowledge of the complex relationship between composition, structure and physical properties is central to understanding the performance of these advanced materials. This book provides both an introduction to the field of thermoelectrics and a survey of the state-of-the-art. Chapters review the important new families of advanced materials that have emerged and taken the field beyond traditional thermoelectric materials such as Bi2Te3, PbTe and SiGe. The emphasis is on the relationship between chemical composition, structure over a range of length scales and the physical properties that underlie performance. Edited by a leader in the field, and with contributions from global experts, Inorganic Thermoelectric Materials serves as an introduction to thermoelectric materials and is accessible to advanced undergraduates and postgraduates, as well as experienced researchers

Book Nano Microscale Heat Transfer

Download or read book Nano Microscale Heat Transfer written by Zhuomin M. Zhang and published by Springer Nature. This book was released on 2020-06-23 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.

Book Nanoscale Energy Transport

Download or read book Nanoscale Energy Transport written by LIAO and published by IOP Publishing Limited. This book was released on 2020-03-20 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.