EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite Volumes for Complex Applications VII Elliptic  Parabolic and Hyperbolic Problems

Download or read book Finite Volumes for Complex Applications VII Elliptic Parabolic and Hyperbolic Problems written by Jürgen Fuhrmann and published by Springer. This book was released on 2014-05-16 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications X   Volume 1  Elliptic and Parabolic Problems

Download or read book Finite Volumes for Complex Applications X Volume 1 Elliptic and Parabolic Problems written by Emmanuel Franck and published by Springer Nature. This book was released on 2023-11-01 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the first part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. This volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. The second volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.

Book Finite Volumes for Complex Applications X   Volume 2  Hyperbolic and Related Problems

Download or read book Finite Volumes for Complex Applications X Volume 2 Hyperbolic and Related Problems written by Emmanuel Franck and published by Springer Nature. This book was released on 2023-10-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.

Book Finite Volumes for Complex Applications VII

Download or read book Finite Volumes for Complex Applications VII written by Jürgen Fuhrmann and published by Springer. This book was released on 2014-05-28 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications VIII   Hyperbolic  Elliptic and Parabolic Problems

Download or read book Finite Volumes for Complex Applications VIII Hyperbolic Elliptic and Parabolic Problems written by Clément Cancès and published by Springer. This book was released on 2017-05-22 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete l evel. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is useful for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications VII Methods and Theoretical Aspects

Download or read book Finite Volumes for Complex Applications VII Methods and Theoretical Aspects written by Jürgen Fuhrmann and published by . This book was released on 2014-06-30 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Volumes For Complex Applications VIII  volumes 1 and 2

Download or read book Finite Volumes For Complex Applications VIII volumes 1 and 2 written by Clément Cancès and published by Springer. This book was released on 2017-05-24 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This set includes the first and second volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) that collect together focused invited papers, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The set of both volumes is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications VIII   Methods and Theoretical Aspects

Download or read book Finite Volumes for Complex Applications VIII Methods and Theoretical Aspects written by Clément Cancès and published by Springer. This book was released on 2017-05-23 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier–Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asy mptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications VII Methods and Theoretical Aspects

Download or read book Finite Volumes for Complex Applications VII Methods and Theoretical Aspects written by Jürgen Fuhrmann and published by Springer. This book was released on 2014-05-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

Book Finite Volumes for Complex Applications IX   Methods  Theoretical Aspects  Examples

Download or read book Finite Volumes for Complex Applications IX Methods Theoretical Aspects Examples written by Robert Klöfkorn and published by Springer Nature. This book was released on 2020-06-09 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Book Numerical Mathematics and Advanced Applications ENUMATH 2015

Download or read book Numerical Mathematics and Advanced Applications ENUMATH 2015 written by Bülent Karasözen and published by Springer. This book was released on 2016-11-09 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: The European Conference on Numerical Mathematics and Advanced Applications (ENUMATH), held every 2 years, provides a forum for discussing recent advances in and aspects of numerical mathematics and scientific and industrial applications. The previous ENUMATH meetings took place in Paris (1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011) and Lausanne (2013). This book presents a selection of invited and contributed lectures from the ENUMATH 2015 conference, which was organised by the Institute of Applied Mathematics (IAM), Middle East Technical University, Ankara, Turkey, from September 14 to 18, 2015. It offers an overview of central recent developments in numerical analysis, computational mathematics, and applications in the form of contributions by leading experts in the field.

Book Theory  Numerics and Applications of Hyperbolic Problems II

Download or read book Theory Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Book The Hybrid High Order Method for Polytopal Meshes

Download or read book The Hybrid High Order Method for Polytopal Meshes written by Daniele Antonio Di Pietro and published by Springer Nature. This book was released on 2020-04-03 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the design and analysis of Hybrid High-Order methods for diffusive problems, along with a panel of applications to advanced models in computational mechanics. Hybrid High-Order methods are new-generation numerical methods for partial differential equations with features that set them apart from traditional ones. These include: the support of polytopal meshes, including non-star-shaped elements and hanging nodes; the possibility of having arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; and a reduced computational cost thanks to compact stencil and static condensation. The first part of the monograph lays the foundations of the method, considering linear scalar second-order models, including scalar diffusion – possibly heterogeneous and anisotropic – and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity, and incompressible fluid flows. This book is primarily intended for graduate students and researchers in applied mathematics and numerical analysis, who will find here valuable analysis tools of general scope.

Book Advanced Numerical and Semi Analytical Methods for Differential Equations

Download or read book Advanced Numerical and Semi Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-03-20 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Book Finite Volumes for Complex Applications VI Problems   Perspectives

Download or read book Finite Volumes for Complex Applications VI Problems Perspectives written by Jaroslav Fořt and published by Springer Science & Business Media. This book was released on 2011-07-21 with total page 1003 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite volume methods are used for various applications in fluid dynamics, magnetohydrodynamics, structural analysis or nuclear physics. A closer look reveals many interesting phenomena and mathematical or numerical difficulties, such as true error analysis and adaptivity, modelling of multi-phase phenomena or fitting problems, stiff terms in convection/diffusion equations and sources. To overcome existing problems and to find solution methods for future applications requires many efforts and always new developments. The goal of The International Symposium on Finite Volumes for Complex Applications VI is to bring together mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context. This book, divided in two volumes, brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics).

Book Shock capturing and high order methods for hyperbolic conservation laws

Download or read book Shock capturing and high order methods for hyperbolic conservation laws written by Jan Glaubitz and published by Logos Verlag Berlin GmbH. This book was released on 2020-03-20 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.