EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Diesel Particulate Filter Technology

Download or read book Diesel Particulate Filter Technology written by Timothy V Johnson and published by SAE International. This book was released on 2007-03-28 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.

Book Influence of Engine Operating Condition and Aftertreatment Component Selection on Diesel Particulate Filter Operation

Download or read book Influence of Engine Operating Condition and Aftertreatment Component Selection on Diesel Particulate Filter Operation written by Eric L. Schroeder and published by . This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and Interpreting the Observed Effects of Ash on Diesel Particulate Filter Performance and Regeneration

Download or read book Modeling and Interpreting the Observed Effects of Ash on Diesel Particulate Filter Performance and Regeneration written by Yujun Wang (Ph. D.) and published by . This book was released on 2014 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emissions regulations. Although the soot deposit can be removed by regeneration, the incombustible material - ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF channels with the increasing vehicle mileage or equivalent running hours. Ash accumulation inside filter increases the flow restriction and reduces the filter soot storage capacity, which results in higher filter regeneration frequencies and larger engine fuel penalty. Combined with experimental observations, DPF models are built to investigate the fundamental mechanisms of DPF aging process. The DPF soot and ash loading model, based on porous media filtration theory, is applied to understand the soot deposition across the substrate wall with soot and ash cake layer formation. DPF models are also used to investigate the process of ash transport and catalyst deactivation with increasing ash load level. DPF ash aging is found to have negative effect on passive regeneration due to the catalyst deactivation and diffusion resistance of ash cake layer. Besides, at given amount of ash load, the effects of ash spatial distribution on DPF performance are studied via simulation. It is found that the ash end plug has significant influences on DPF pressure drop while ash radial and axial distributions have minor effects. At known ash and substrate property, DPF performance can be optimized according the sensitivity map developed from this study. DPF model is beneficial to interpret the experimental observations and it is applied to predict the effects of certain factors, like flow rate and deposit level, on DPF performance. At the same time, modeling results are useful in optimizing the design of the combined engine-aftertreatment-lubricant system for future diesel engines and in understanding the requirements for robust aftertreatment systems.

Book Diesel Emissions and Their Control  2nd Edition

Download or read book Diesel Emissions and Their Control 2nd Edition written by W. Addy Majewski and published by SAE International. This book was released on 2023-12-20 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers, applied scientists, students, and individuals working to reduceemissions and advance diesel engine technology will find the secondedition of Diesel Emissions and Their Control to be an indispensablereference. Whether readers are at the outset of their learning journey orseeking to deepen their expertise, this comprehensive reference bookcaters to a wide audience.In this substantial update to the 2006 classic, the authors have expandedthe coverage of the latest emission technologies. With the industryevolving rapidly, the book ensures that readers are well-informed aboutthe most recent advances in commercial diesel engines, providing acompetitive edge in their respective fields. The second edition has alsostreamlined the content to focus on the most promising technologies.This book is rooted in the wealth of information available on DieselNet.com, where the “Technology Guide” papers offer in-depth insights. Eachchapter includes links to relevant online materials, granting readers accessto even more expertise and knowledge.The second edition is organized into six parts, providing a structuredjourney through every aspect of diesel engines and emissions control: Part I: A foundational exploration of the diesel engine, combustion, andessential subsystems. Part II: An in-depth look at emission characterization, health andenvironmental impacts, testing methods, and global regulations. Part III: A comprehensive overview of diesel fuels, covering petroleumdiesel, alternative fuels, and engine lubricants. Part IV: An exploration of engine efficiency and emission controltechnologies, from exhaust gas recirculation to engine control. Part V: The latest developments in diesel exhaust aftertreatment,encompassing catalyst technologies and particulate filters. Part VI: A historical journey through the evolution of dieselengine technology, with a focus on heavy-duty engines in the NorthAmerican market. (ISBN 9781468605693, ISBN 9781468605709, ISBN 9781468605716, DOI: 10.4271/9781468605709)

Book Impact of Particulate Matter Composition on Catalyzed Diesel Particulate Filter Filtration and Regeneration on a Steady State Research Diesel Engine

Download or read book Impact of Particulate Matter Composition on Catalyzed Diesel Particulate Filter Filtration and Regeneration on a Steady State Research Diesel Engine written by Matthew Bohm and published by . This book was released on 2005 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Filter Retrofit for All Diesel Engines

Download or read book Particle Filter Retrofit for All Diesel Engines written by Andreas Mayer and published by expert verlag. This book was released on 2008 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effects of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance

Download or read book The Effects of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance written by Ekathai Wirojsakunchai and published by . This book was released on 2008 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fuel Efficient Diesel Particulate Filter  DPF  Modeling and Development

Download or read book Fuel Efficient Diesel Particulate Filter DPF Modeling and Development written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Book Performance Effects and Causal Mechanisms of Mid channel Congestion in Diesel Particulate Filters

Download or read book Performance Effects and Causal Mechanisms of Mid channel Congestion in Diesel Particulate Filters written by Ian Patrick Tracy and published by . This book was released on 2021 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The diesel particulate filter (DPF) is a ~$5,000-$50,000 USD critical component of aftertreatment systems installed in diesel engine-powered vehicles. The device is designed to trap particles emitted by the diesel combustion process in order to prevent their release into the surrounding environment, thereby reducing pollution levels and mitigating greenhouse gas emissions. Increasing stringency of emissions regulations has progressively necessitated the installation of DPFs on diesel-powered vehicles over the past few years, with the DPF market expected to remain significant in size at least through 2025. While DPFs nominally operate by trapping and accumulating incoming PM continuously in the far downstream plug region of the filter channels so that no gaps form between trapped particulate matter (PM) agglomerates, both real-world field and laboratory bench tests have demonstrated that channel-spanning ash agglomerates form well upstream of the end plug region, prematurely clogging the mid-channel region. This effectively renders useless the remaining open space in the channel downstream of the blockage location. In addition to mid-channel congestion, this adverse phenomenon is referred to in the literature interchangeably as mid-channel collapse (MCC), mid-channel clogging, and mid-channel deposits (MCD). MCC, due to accelerated filling of the filter channels, often results in significantly reduced DPF lifetime and performance (i.e. increased backpressure yielding depressed fuel economy), both of which prove costly for diesel vehicle operators. Existing hypotheses regarding causality of MCC are largely based on inconclusive empirical observations, and not substantiated by fundamental quantitative analysis. The primary contributions of this dissertation include: 1) summarizing hypothesized causal mechanisms of MCC with an emphasis on sintering as a primary driver thereof, 2) introducing a method by which to analyze X-Ray CT scans that show MCC in DPF channels, 3) assessing the performance penalty associated with MCC by correspondingly extending the industry standard model for pressure drop across a DPF, and 4) suggesting modifications to the DPF regeneration process in order to prevent sintering of ash agglomerates to the DPF side walls, based on an efficient reformulation of the prevalent temperature history model of the DPF that solves for both flow and temperature conditions inside filter channels over time during active regeneration.

Book Passive Regeneration

    Book Details:
  • Author : Michael James Bahr (Nav. E.)
  • Publisher :
  • Release : 2013
  • ISBN :
  • Pages : 92 pages

Download or read book Passive Regeneration written by Michael James Bahr (Nav. E.) and published by . This book was released on 2013 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diesel particulate filters (DPF) have seen widespread growth as an effective means for meeting increasingly rigorous particle emissions regulations. There is growing interest to exploit passive regeneration of DPFs to reduce fuel consumption accompanying traditional active regeneration. Incombustible material or ash, mainly derived from metallic additives in the engine lubricant, accumulates in the DPF over time. This ash accumulation increases flow restriction and rise in pressure drop across the DPF. The growth of pressure drop adversely impacts engine performance and fuel economy. This study built upon previous research to evaluate the different effects of regeneration strategy on ash packing and distribution within DPFs. Since passive regeneration relies on a catalyzed reaction, the interactions of ash with the catalyst will play an important role. Passive regeneration is specifically dependent on exhaust feed gas composition, exhaust conditions including temperature and flow rate, catalyst type and configuration, and the state of DPF loading during prior to passive regeneration. The goal of the study is to address the long-term effects of regeneration parameters on ash accumulations and the resulting impact of ash on the DPF catalyst performance. Experiments were conducted that focused on pressure drop measurements over the lifetime of diesel particulate filters with different regeneration methods coupled with post mortem ash characterization. These experiments provide insight to how these regeneration methods impact the DPF performance. These results, among few fundamental data of this kind, correlate changes in diesel particulate filter performance with exhaust conditions, regeneration strategy, and ash morphological characteristics. Outcomes are useful in optimizing the design of the combined engine-aftertreatment- lubricant system for future diesel engines, balancing the necessities of additives for adequate engine protection with the requirements for robust aftertreatment systems.

Book Particulate Emissions Control Using Advanced Filter Systems

Download or read book Particulate Emissions Control Using Advanced Filter Systems written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

Book Critical Topics in Exhaust Gas Aftertreatment

Download or read book Critical Topics in Exhaust Gas Aftertreatment written by Peter Eastwood and published by . This book was released on 2000 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics most critical to exhaust gas aftertreatment are described in depth: the problems which need to be overcome, and the possible solutions currently under investigation. After treatment is covered as an emissions subject in its own right; and all components of the entire system are included, not just catalysts. Highly technical issues are presented in a way that makes them readily accessible to the non-specialist. It Includes 700 references.

Book Diesel Emissions and Their Control  2nd Edition

Download or read book Diesel Emissions and Their Control 2nd Edition written by W. Addy Majewski and published by SAE International. This book was released on 2023-12-20 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers, applied scientists, students, and individuals working to reduceemissions and advance diesel engine technology will find the secondedition of Diesel Emissions and Their Control to be an indispensablereference. Whether readers are at the outset of their learning journey orseeking to deepen their expertise, this comprehensive reference bookcaters to a wide audience.In this substantial update to the 2006 classic, the authors have expandedthe coverage of the latest emission technologies. With the industryevolving rapidly, the book ensures that readers are well-informed aboutthe most recent advances in commercial diesel engines, providing acompetitive edge in their respective fields. The second edition has alsostreamlined the content to focus on the most promising technologies.This book is rooted in the wealth of information available on DieselNet.com, where the “Technology Guide” papers offer in-depth insights. Eachchapter includes links to relevant online materials, granting readers accessto even more expertise and knowledge.The second edition is organized into six parts, providing a structuredjourney through every aspect of diesel engines and emissions control: Part I: A foundational exploration of the diesel engine, combustion, andessential subsystems. Part II: An in-depth look at emission characterization, health andenvironmental impacts, testing methods, and global regulations. Part III: A comprehensive overview of diesel fuels, covering petroleumdiesel, alternative fuels, and engine lubricants. Part IV: An exploration of engine efficiency and emission controltechnologies, from exhaust gas recirculation to engine control. Part V: The latest developments in diesel exhaust aftertreatment,encompassing catalyst technologies and particulate filters. Part VI: A historical journey through the evolution of dieselengine technology, with a focus on heavy-duty engines in the NorthAmerican market. (ISBN 9781468605693, ISBN 9781468605709, ISBN 9781468605716, DOI: 10.4271/9781468605709)

Book Effect of Active and Passive Regeneration Techniques for Diesel Particulate Filters on NOx and PM Emissions

Download or read book Effect of Active and Passive Regeneration Techniques for Diesel Particulate Filters on NOx and PM Emissions written by Chad Edward Crosbie and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterizing Ash and Substrate Properties in Sintered Metal Fiber Diesel Particulate Filters Using an Advanced Diagnostic Approach

Download or read book Characterizing Ash and Substrate Properties in Sintered Metal Fiber Diesel Particulate Filters Using an Advanced Diagnostic Approach written by Paul John Folino and published by . This book was released on 2015 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to comply with strict air emissions regulations, applicable diesel engines are required to have an installed after-treatment device. A diesel particulate filter (DPF) is one of these aftertreatment devices, and it is used to capture hazardous particulate matter (PM) from the engine exhaust stream. Over the lifetime of the DPF, incombustible materials like ash are deposited within the DPF. The presence of ash inhibits the exhaust flow and thus causes flow restriction throughout the filter. This increase in the flow restriction due to ash accumulation has an adverse effect on engine performance, primarily a reduction in fuel economy. While the global effects of ash on engine performance are well researched and understood, the fundamental mechanisms of ash phenomenology in the DPF require further understanding. Current experimental data mainly addresses how ash porosity and permeability influence pressure drop across the filter, but an investigation of these properties reveals how other key sub parameters, such as ash particle size and distribution and filter oxidation level, significantly contribute to an increase in pressure drop as well. The focus of this work is to understand the behavior of ash particles in a sintered metal fiber (SMF) filter substrate and recognize the resultant effect on DPF pressure drop using an advanced diagnostic approach. Much of the work relies on the use of sophisticated imaging and software tools to quantify properties such as particle size, particle distribution, filter porosity, and permeability among others. Additionally, this research introduces and demonstrates the capabilities of these cutting-edge tools and how they can best be utilized to provide filter performance data to qualify existing and future experimental data for SMF or cordierite filters. An analysis of the data reveals a statistically significant dependence between pressure drop and the aforementioned sub-parameters.