EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Filtering and System Identification

Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2012-07-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Book Filtering and System Identification

Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2007-04-26 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Book Adaptive Nonlinear System Identification

Download or read book Adaptive Nonlinear System Identification written by Tokunbo Ogunfunmi and published by Springer Science & Business Media. This book was released on 2007-09-05 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

Book Subspace Identification for Linear Systems

Download or read book Subspace Identification for Linear Systems written by Peter van Overschee and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.

Book Filtering and System Identification

Download or read book Filtering and System Identification written by Michel Verhaegen and published by Cambridge University Press. This book was released on 2007-04-26 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filtering and system identification are powerful techniques for building models of complex systems. This 2007 book discusses the design of reliable numerical methods to retrieve missing information in models derived using these techniques. Emphasis is on the least squares approach as applied to the linear state-space model, and problems of increasing complexity are analyzed and solved within this framework, starting with the Kalman filter and concluding with the estimation of a full model, noise statistics and state estimator directly from the data. Key background topics, including linear matrix algebra and linear system theory, are covered, followed by different estimation and identification methods in the state-space model. With end-of-chapter exercises, MATLAB simulations and numerous illustrations, this book will appeal to graduate students and researchers in electrical, mechanical and aerospace engineering. It is also useful for practitioners. Additional resources for this title, including solutions for instructors, are available online at www.cambridge.org/9780521875127.

Book Subspace Methods for System Identification

Download or read book Subspace Methods for System Identification written by Tohru Katayama and published by Springer Science & Business Media. This book was released on 2005-10-11 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth introduction to subspace methods for system identification in discrete-time linear systems thoroughly augmented with advanced and novel results, this text is structured into three parts. Part I deals with the mathematical preliminaries: numerical linear algebra; system theory; stochastic processes; and Kalman filtering. Part II explains realization theory as applied to subspace identification. Stochastic realization results based on spectral factorization and Riccati equations, and on canonical correlation analysis for stationary processes are included. Part III demonstrates the closed-loop application of subspace identification methods. Subspace Methods for System Identification is an excellent reference for researchers and a useful text for tutors and graduate students involved in control and signal processing courses. It can be used for self-study and will be of interest to applied scientists or engineers wishing to use advanced methods in modeling and identification of complex systems.

Book Spectrum Estimation and System Identification

Download or read book Spectrum Estimation and System Identification written by S.Unnikrishna Pillai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectrum estimation refers to analyzing the distribution of power or en ergy with frequency of the given signal, and system identification refers to ways of characterizing the mechanism or system behind the observed sig nal/data. Such an identification allows one to predict the system outputs, and as a result this has considerable impact in several areas such as speech processing, pattern recognition, target identification, seismology, and signal processing. A new outlook to spectrum estimation and system identification is pre sented here by making use of the powerful concepts of positive functions and bounded functions. An indispensable tool in classical network analysis and synthesis problems, positive functions and bounded functions are well and their intimate one-to-one connection with power spectra understood, makes it possible to study many of the signal processing problems from a new viewpoint. Positive functions have been used to study interpolation problems in the past, and although the spectrum extension problem falls within this scope, surprisingly the system identification problem can also be analyzed in this context in an interesting manner. One useful result in this connection is regarding rational and stable approximation of nonrational transfer functions both in the single-channel case and the multichannel case. Such an approximation has important applications in distributed system theory, simulation of systems governed by partial differential equations, and analysis of differential equations with delays. This book is intended as an introductory graduate level textbook and as a reference book for engineers and researchers.

Book Introduction to Digital Filters

Download or read book Introduction to Digital Filters written by Julius Orion Smith and published by Julius Smith. This book was released on 2007 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: A digital filter can be pictured as a "black box" that accepts a sequence of numbers and emits a new sequence of numbers. In digital audio signal processing applications, such number sequences usually represent sounds. For example, digital filters are used to implement graphic equalizers and other digital audio effects. This book is a gentle introduction to digital filters, including mathematical theory, illustrative examples, some audio applications, and useful software starting points. The theory treatment begins at the high-school level, and covers fundamental concepts in linear systems theory and digital filter analysis. Various "small" digital filters are analyzed as examples, particularly those commonly used in audio applications. Matlab programming examples are emphasized for illustrating the use and development of digital filters in practice.

Book Applied System Identification

Download or read book Applied System Identification written by Jer-Nan Juang and published by . This book was released on 1994 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: System identification is the process of developing or improving a mathematical representation of a physical system using experimental data. Over the past decade, several system identification techniques have been developed within different disciplines. This text/reference brings together the significant advances over the past decade into a single unified source -- with common mathematical notation that will enable readers from a variety of engineering areas -- e.g., aerospace, electrical, civil, and mechanical engineering --to apply system identification to engineering systems. Focuses on the three types of identification in engineering structures -- modal parameter identification; structural-model parameter identification; and control-model identification. For researchers and engineers, students, and teachers in vibrations, controls and system identification.

Book System Identification

    Book Details:
  • Author : Rik Pintelon
  • Publisher : John Wiley & Sons
  • Release : 2004-04-05
  • ISBN : 0471660957
  • Pages : 644 pages

Download or read book System Identification written by Rik Pintelon and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Book System Identification

Download or read book System Identification written by Karel J. Keesman and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Book System Identification

Download or read book System Identification written by Torsten Söderström and published by . This book was released on 1989 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook designed for senior undergraduate and graduate level classroom courses on system identification. Examples and problems. Annotation copyrighted by Book News, Inc., Portland, OR

Book Principles of System Identification

Download or read book Principles of System Identification written by Arun K. Tangirala and published by CRC Press. This book was released on 2018-10-08 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397

Book System Identification  Environmental Modelling  and Control System Design

Download or read book System Identification Environmental Modelling and Control System Design written by Liuping Wang and published by Springer Science & Business Media. This book was released on 2011-10-20 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to Prof. Peter Young on his 70th birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume comprises a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as a source of study material for graduate students in those areas.

Book Model Identification and Data Analysis

Download or read book Model Identification and Data Analysis written by Sergio Bittanti and published by John Wiley & Sons. This book was released on 2019-04-02 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook offers an approach that has proven successful throughout the many years during which its author has taught these topics at his University. The book: Contains accessible methods explained step-by-step in simple terms Offers an essential tool useful in a variety of fields, especially engineering, statistics, and mathematics Includes an overview on random variables and stationary processes, as well as an introduction to discrete time models and matrix analysis Incorporates historical commentaries to put into perspective the developments that have brought the discipline to its current state Provides many examples and solved problems to complement the presentation and facilitate comprehension of the techniques presented

Book Optimal Filtering

    Book Details:
  • Author : Brian D. O. Anderson
  • Publisher : Courier Corporation
  • Release : 2012-05-23
  • ISBN : 0486136892
  • Pages : 370 pages

Download or read book Optimal Filtering written by Brian D. O. Anderson and published by Courier Corporation. This book was released on 2012-05-23 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.