EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication of Three dimensional Photonic Crystals Via Direct Laser Writing in an All inorganic Photoresist  microform

Download or read book Fabrication of Three dimensional Photonic Crystals Via Direct Laser Writing in an All inorganic Photoresist microform written by Sean Hang Edmond Wong and published by Library and Archives Canada = Bibliothèque et Archives Canada. This book was released on 2005 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Three dimensional Photonic Crystals Via Direct Laser Writing

Download or read book Three dimensional Photonic Crystals Via Direct Laser Writing written by Markus Deubel and published by . This book was released on 2006 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Novel Inorganic Photoresists for Three Dimensional Microfabrication

Download or read book Novel Inorganic Photoresists for Three Dimensional Microfabrication written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Photonic Crystals

    Book Details:
  • Author : Kurt Busch
  • Publisher : John Wiley & Sons
  • Release : 2006-05-12
  • ISBN : 352760717X
  • Pages : 380 pages

Download or read book Photonic Crystals written by Kurt Busch and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of the contributions in this topically edited book stems from the priority program SPP 1113 "Photonische Kristalle" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers. Illustrated in full color, this book is not only of interest to advanced students and researchers in physics, electrical engineering, and material science, but also to company R&D departments involved in photonic crystal-related technological developments.

Book Multiphoton Lithography

Download or read book Multiphoton Lithography written by Jürgen Stampfl and published by John Wiley & Sons. This book was released on 2016-09-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book on this fascinating, interdisciplinary topic meets the much-felt need for an up-to-date overview of the field. Written with both beginners and professionals in mind, this ready reference begins with an introductory section explaining the basics of the various multi-photon and photochemical processes together with a description of the equipment needed. A team of leading international experts provides the latest research results on such materials as new photoinitiators, hybrid photopolymers, and metallic carbon nanotube composites. They also cover promising applications and prospective trends, including photonic crystals, microfluidic devices, biological scaffolds, metamaterials, waveguides, and functionalized hydrogels. By bringing together the essentials for both industrial and academic researchers, this is an invaluable companion for materials scientists, polymer chemists, surface chemists, surface physicists, biophysicists, and medical scientists working with 3D micro- and nanostructures.

Book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

Download or read book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography written by Ying-Chieh Chen and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical spectroscopy. Theoretical spectra are calculated and demonstrate close agreement with experimental values, indicating that this fabrication process achieves excellent optical quality. X-ray microscopy provides non-destructive inspection of the fabricated crystals at nano-scale resolution. A reconstructed crystal model is generated by computed tomography which allows for comparison to a predicted structure's geometry and optical spectra. Using the polymer crystal as a template, electrodeposition is performed to completely infiltrate the crystal with Cu2O. After polymer removal the inverted Cu2O crystal exhibits a high peak reflectance at the predicted wavelength, indicating the structure is an exact inverse of the template. A conformal growth algorithm is developed for the commonly used chemical vapor deposition infiltration technique to explain growth results and verified experimentally with atomic layer deposition of oxide materials. Finally, a customized chemically amplified positive photoresist system and its processing steps are developed as a route to zero-shrinkage template material for high fidelity patterning of the designed interference patterns.

Book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

Download or read book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography written by Ying-Chieh Chen and published by . This book was released on 2009 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical spectroscopy. Theoretical spectra are calculated and demonstrate close agreement with experimental values, indicating that this fabrication process achieves excellent optical quality. X-ray microscopy provides non-destructive inspection of the fabricated crystals at nano-scale resolution. A reconstructed crystal model is generated by computed tomography which allows for comparison to a predicted structure's geometry and optical spectra. Using the polymer crystal as a template, electrodeposition is performed to completely infiltrate the crystal with Cu2O. After polymer removal the inverted Cu2O crystal exhibits a high peak reflectance at the predicted wavelength, indicating the structure is an exact inverse of the template. A conformal growth algorithm is developed for the commonly used chemical vapor deposition infiltration technique to explain growth results and verified experimentally with atomic layer deposition of oxide materials. Finally, a customized chemically amplified positive photoresist system and its processing steps are developed as a route to zero-shrinkage template material for high fidelity patterning of the designed interference patterns.

Book Three dimensional Micron scale Metal Photonic Crystals Via Multi photon Direct Laser Writing and Electroless Metal Deposition

Download or read book Three dimensional Micron scale Metal Photonic Crystals Via Multi photon Direct Laser Writing and Electroless Metal Deposition written by Amir Tal and published by . This book was released on 2007 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) metal photonic crystals (MPCs) can exhibit interesting electromagnetic properties such as ultra-wide photonic or "plasmonic" band gaps, selectively tailored thermal emission, extrinsically modified absorption, and negative refractive index. Yet, optical-wavelength 3D MPCs remain relatively unexplored due to the challenges posed by their fabrication. This work explores the use of multi-photon direct laser writing (DLW) coupled with electroless metallization as a means for preparing MPCs. Multi-photon DLW was used to prepare polymeric photonic crystal (PC) templates having a targeted micron-scale structure and form. MPCs were then created by metallizing the polymeric PCs via wet-chemical electroless deposition. The electromagnetic properties of the polymeric PCs and the metallized structures were characterized using Fourier transform infrared spectroscopy. It is shown that metallization transforms the optical properties of the structures from those of conventional 3D dielectric PCs to those consistent with 3D MPCs that exhibit ultra-wide photonic band gaps. These data demonstrate that multi-photon DLW followed by electroless deposition provides a viable and highly flexible route to MPCs, opening a new path to metal photonic materials and devices.

Book Fabrication of Photonic Structures by Two photon Polymerization

Download or read book Fabrication of Photonic Structures by Two photon Polymerization written by Jesper Juul Serbin and published by Cuvillier Verlag. This book was released on 2004 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Comprehensive Materials Finishing

Download or read book Comprehensive Materials Finishing written by M.S.J. Hashmi and published by Elsevier. This book was released on 2016-08-29 with total page 1467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finish Manufacturing Processes are those final stage processing techniques which are deployed to bring a product to readiness for marketing and putting in service. Over recent decades a number of finish manufacturing processes have been newly developed by researchers and technologists. Many of these developments have been reported and illustrated in existing literature in a piecemeal manner or in relation only to specific applications. For the first time, Comprehensive Materials Finishing, Three Volume Set integrates a wide body of this knowledge and understanding into a single, comprehensive work. Containing a mixture of review articles, case studies and research findings resulting from R & D activities in industrial and academic domains, this reference work focuses on how some finish manufacturing processes are advantageous for a broad range of technologies. These include applicability, energy and technological costs as well as practicability of implementation. The work covers a wide range of materials such as ferrous, non-ferrous and polymeric materials. There are three main distinct types of finishing processes: Surface Treatment by which the properties of the material are modified without generally changing the physical dimensions of the surface; Finish Machining Processes by which a small layer of material is removed from the surface by various machining processes to render improved surface characteristics; and Surface Coating Processes by which the surface properties are improved by adding fine layer(s) of materials with superior surface characteristics. Each of these primary finishing processes is presented in its own volume for ease of use, making Comprehensive Materials Finishing an essential reference source for researchers and professionals at all career stages in academia and industry. Provides an interdisciplinary focus, allowing readers to become familiar with the broad range of uses for materials finishing Brings together all known research in materials finishing in a single reference for the first time Includes case studies that illustrate theory and show how it is applied in practice

Book The Fabrication and Assessment of Three Dimensional Photonic Crystals

Download or read book The Fabrication and Assessment of Three Dimensional Photonic Crystals written by David Neil Sharp and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Three Dimensional Microfabrication Using Two Photon Polymerization

Download or read book Three Dimensional Microfabrication Using Two Photon Polymerization written by Tommaso Baldacchini and published by William Andrew. This book was released on 2019-10-31 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-Dimensional Microfabrication Using Two-Photon Polymerization, Second Edition offers a comprehensive guide to TPP microfabrication and a unified description of TPP microfabrication across disciplines. It offers in-depth discussion and analysis of all aspects of TPP, including the necessary background, pros and cons of TPP microfabrication, material selection, equipment, processes and characterization. Current and future applications are covered, along with case studies that illustrate the book's concepts. This new edition includes updated chapters on metrology, synthesis and the characterization of photoinitiators used in TPP, negative- and positive-tone photoresists, and nonlinear optical characterization of polymers. This is an important resource that will be useful for scientists involved in microfabrication, generation of micro- and nano-patterns and micromachining. - Discusses the major types of nanomaterials used in the agriculture and forestry sectors, exploring how their properties make them effective for specific applications - Explores the design, fabrication, characterization and applications of nanomaterials for new Agri-products - Offers an overview of regulatory aspects regarding the use of nanomaterials for agriculture and forestry

Book Fabrication and Chemical Modifications of Photonic Crystals Produced by Multiphoton Lithography

Download or read book Fabrication and Chemical Modifications of Photonic Crystals Produced by Multiphoton Lithography written by Vincent W. Chen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the fabrication methodology of polymeric photonic crystals operating in the visible to near infrared regions and the correlation between the chemical deposition morphologies and the resultant photonic stopband enhancements of photonic crystals. Multiphoton lithography (MPL) is a powerful approach to the fabrication of polymeric 3D micro- and nano-structures with a typical minimum feature size ~ 200 nm. The completely free-form 3D fabrication capability of MPL is very well suited to the formation of tailored photonic crystals (PCs), including structures containing well defined defects. Such structures are of considerable current interest as micro-optical devices for their filtering, stop-band, dispersion, resonator, or waveguiding properties. More specifically, the stop-band characteristics of polymer PCs can be finely controlled via nanoscale changes in rod spacings and the chemical functionalities at the polymer surface can be readily utilized to impart new optical properties. Nanoscale features as small as 65 ± 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the visible to near-infrared spectral region. 85 ± 4 nm features were formed using swollen gel photoresist by 730 nm excitation MPL. An index matching oil was used to induce chemical swelling of gel resists prior to MPL fabrication. When swollen matrices were subjected to multiphoton excitation, a similar excitation volume is achieved as in normal unswollen resins. However, upon deswelling of the photoresist following development a substantial reduction in feature size was obtained. PCs with high structural fidelity across 100 æm x 100 æm x 32 layers exhibited strong reflectivity (>60% compared to a gold mirror) in the near infrared region. The positions of the stop-bands were tuned by varying the swelling time, the exposure power (which modifies the feature sizes), and the layer spacing between rods. Silver coatings have been applied to PCs with a range of coverage densities and thicknesses using electroless deposition. Sparse coatings resulted in enhanced reflectivity for the stop band located at ~5 æm, suggesting improved interface reflectivity inside the photonic crystal due to the Ag coating. Thick coatings resulted in plasmonic bandgap behavior with broadband reflectivity enhancement and PC lattice related bandedge at 1.75 æm. Conformal titania coatings were grown onto the PCs via a surface sol-gel method. Uniform and smooth titania coatings were achieved, resulting in systematically red-shifted stopbands from their initial positions with increasing thicknesses, corresponding to the increased effective refractive index of the PC. High quality titania shell structures with modest stopbands were obtained after polymer removal. Gold replica structures were obtained by electroless deposition on the silica cell walls of naturally occurring diatoms and the subsequent silica removal. The micron-scaled periodic hole lattice originated from the diatom resulted in surface plasmon interferences when excited by infrared frequencies. The hole patterns were characterized and compared with hexagonal hole arrays fabricated by focused ion beam etching of similarly gold plated substrate. Modeling of the hole arrays concluded that while diatom replicas lack long-ranged periodicity, the local hole to hole spacings were sufficient to generate enhanced transmission of 13% at 4.2 æm. The work presented herein is a step towards the development of PCs with new optical and chemical functionalities. The ability to rapidly prototype polymeric PCs of various lattice parameters using MPL combined with facile coating chemistries to create structures with the desired optical properties offers a powerful means to produce tailored high performance photonic crystal devices.

Book Photonic Band Gap Materials

    Book Details:
  • Author : C.M. Soukoulis
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9400916655
  • Pages : 725 pages

Download or read book Photonic Band Gap Materials written by C.M. Soukoulis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.

Book Design  Fabrication and Characterization of Three dimensional Photonic Crystals

Download or read book Design Fabrication and Characterization of Three dimensional Photonic Crystals written by Lifeng Chen and published by . This book was released on 2016 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: