EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Organic Field Effect Transistors

Download or read book Organic Field Effect Transistors written by Ioannis Kymissis and published by Springer Science & Business Media. This book was released on 2008-12-25 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Field Effect Transistors presents the state of the art in organic field effect transistors (OFETs), with a particular focus on the materials and techniques useful for making integrated circuits. The monograph begins with some general background on organic semiconductors, discusses the types of organic semiconductor materials suitable for making field effect transistors, the fabrication processes used to make integrated Circuits, and appropriate methods for measurement and modeling. Organic Field Effect Transistors is written as a basic introduction to the subject for practitioners. It will also be of interest to researchers looking for references and techniques that are not part of their subject area or routine. A synthetic organic chemist, for example, who is interested in making OFETs may use the book more as a device design and characterization reference. A thin film processing electrical engineer, on the other hand, may be interested in the book to learn about what types of electron carrying organic semiconductors may be worth trying and learning more about organic semiconductor physics.

Book Fabrication and Electrical Characterization of Transistors Made from Carbon Nanotubes and Graphene

Download or read book Fabrication and Electrical Characterization of Transistors Made from Carbon Nanotubes and Graphene written by Daniel Andrew Nezich and published by . This book was released on 2010 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes and graphene are low-dimensional allotropes of carbon which exhibit novel mechanical and electrical properties. The methods for producing these materials and fabricating electronic devices from them are still under development. This thesis uses the fabrication and electronic analysis of field-effect transistors made from carbon nanotubes and graphene to gain insights into the growth process of these materials, to understand complications of the fabrication process, and to assess the quality of the materials through their electronic properties. The numbers of semoconducting and metallic nanotubes produced by growth using two different catalysts are counted by the process of electrical cutting. Various highcurrent phenomena are observed and explained through use of multi-nanotube and charge leakage models. The high-current annealing method discovered for nanotubes is found to also be useful for improving the quality of graphene devices. The graphene used for device fabrication is produced by thermal chemical vapor deposition on thin film nickel. The large area and weak adhesion of this material leads to the alteration of device designs and fabrication procedures, including substrate exposure and high-temperature annealing. A new nanofluidic device is introduced to study the enhanced lateral wet etching rate of materials in contact with graphene. Two sets of graphene field-effect transistors are analyzed, a first for this type of material. Improved material quality results in improved electrical mobility. Two independent models are derived which relate the thickness of a graphene film to its gate-voltage dependent behaviour, and are justified by experiment. Temperature dependence, quantum capacitance, and multiterminal measurements are discussed.

Book Design  Fabrication and Characterization of Field effect Transistors Based on Two dimensional Materials and Their Circuit Applications

Download or read book Design Fabrication and Characterization of Field effect Transistors Based on Two dimensional Materials and Their Circuit Applications written by Sk. Fahad Chowdhury and published by . This book was released on 2015 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of two-dimensional layered materials has witnessed extensive research activities during the past decade, which commenced with the seminal work of isolating graphene from bulk graphite. In addition to providing a rich playground for scientific experiments, graphene has soon become a material of technological interest for many of its fascinating electrical, thermal, mechanical and optical properties. The controllability of carrier density with electric field in graphene, along with very high carrier mobility and saturation velocity, has motivated the use of graphene channel in field-effect devices. Also, the two-dimensional layered materials family has grown very rapidly with the application of the graphene exfoliation technique and many of these elemental and compound materials are considered useful for transistor applications. In this work, various aspects of the use of two-dimensional layered materials for transistor applications were analyzed. Starting with material synthesis, field-effect transistors (FETs) were designed, fabricated and tested for their DC and high frequency performances. Through the detailed electrical and spectroscopic investigations of several processing techniques for enhanced FET performance, numerous insights were obtained into the FET operation and performance bottlenecks. The reduction of charged impurity scattering in graphene FET by Hexamethyldisilazane interaction improved field-effect mobility and reduced residual carrier concentration. This technique was also shown to be promising for other two-dimensional materials based FET. A useful technique for reducing the thickness of black phosphorus flake with oxygen plasma etching was developed. Both back-gated and top-gated FETs were implemented with good performances. Secondary ion mass spectroscopy and x-ray photoelectron spectroscopy revealed vital structural information about layered black phosphorus. Lastly, these exotic materials based FETs were characterized for their high frequency performance, resulting in gigahertz range transit frequency and operated in a variety of important circuit configurations such as frequency multiplier, amplifier, mixer and AM demodulator.

Book Graphene Field Effect Transistors

Download or read book Graphene Field Effect Transistors written by Omar Azzaroni and published by John Wiley & Sons. This book was released on 2023-08-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene Field-Effect Transistors In-depth resource on making and using graphene field effect transistors for point-of-care diagnostic devices Graphene Field-Effect Transistors focuses on the design, fabrication, characterization, and applications of graphene field effect transistors, summarizing the state-of-the-art in the field and putting forward new ideas regarding future research directions and potential applications. After a review of the unique electronic properties of graphene and the production of graphene and graphene oxide, the main part of the book is devoted to the fabrication of graphene field effect transistors and their sensing applications. Graphene Field-Effect Transistors includes information on: Electronic properties of graphene, production of graphene oxide and reduced graphene oxide, and graphene functionalization Fundamentals and fabrication of graphene field effect transistors, and nanomaterial/graphene nanostructure-based field-effect transistors Graphene field-effect transistors integrated with microfluidic platforms and flexible graphene field-effect transistors Graphene field-effect transistors for diagnostics applications, and DNA biosensors and immunosensors based on graphene field-effect transistors Graphene field-effect transistors for targeting cancer molecules, brain activity recording, bacterial detection, and detection of smell and taste Providing both fundamentals of the technology and an in-depth overview of using graphene field effect transistors for fabricating bioelectronic devices that can be applied for point-of-care diagnostics, Graphene Field-Effect Transistors is an essential reference for materials scientists, engineering scientists, laboratory medics, and biotechnologists.

Book Graphene Science Handbook  Six Volume Set

Download or read book Graphene Science Handbook Six Volume Set written by Mahmood Aliofkhazraei and published by CRC Press. This book was released on 2016-04-26 with total page 3379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is the strongest material ever studied and can be an efficient substitute for silicon. This six-volume handbook focuses on fabrication methods, nanostructure and atomic arrangement, electrical and optical properties, mechanical and chemical properties, size-dependent properties, and applications and industrialization. There is no other major reference work of this scope on the topic of graphene, which is one of the most researched materials of the twenty-first century. The set includes contributions from top researchers in the field and a foreword written by two Nobel laureates in physics. Volumes in the set: K20503 Graphene Science Handbook: Mechanical and Chemical Properties (ISBN: 9781466591233) K20505 Graphene Science Handbook: Fabrication Methods (ISBN: 9781466591271) K20507 Graphene Science Handbook: Electrical and Optical Properties (ISBN: 9781466591318) K20508 Graphene Science Handbook: Applications and Industrialization (ISBN: 9781466591332) K20509 Graphene Science Handbook: Size-Dependent Properties (ISBN: 9781466591356) K20510 Graphene Science Handbook: Nanostructure and Atomic Arrangement (ISBN: 9781466591370)

Book Nanoscale Field Effect Transistors  Emerging Applications

Download or read book Nanoscale Field Effect Transistors Emerging Applications written by Ekta Goel, Archana Pandey and published by Bentham Science Publishers. This book was released on 2023-12-20 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Field Effect Transistors: Emerging Applications is a comprehensive guide to understanding, simulating, and applying nanotechnology for design and development of specialized transistors. This book provides in-depth information on the modeling, simulation, characterization, and fabrication of semiconductor FET transistors. The book contents are structured into chapters that explain concepts with simple language and scientific references. The core of the book revolves around the fundamental physics that underlie the design of solid-state nanostructures and the optimization of these nanoscale devices for real-time applications. Readers will learn how to achieve superior performance in terms of reduced size and weight, enhanced subthreshold characteristics, improved switching efficiency, and minimal power consumption. Key Features: Quick summaries: Each chapter provides an introduction and summary to explain concepts in a concise manner. In-Depth Analysis: This book provides an extensive exploration of the theory and practice of nanoscale materials and devices, offering a detailed understanding of the technical aspects of Nano electronic FET transistors. Multidisciplinary Approach: It discusses various aspects of nanoscale materials and devices for applications such as quantum computation, biomedical applications, energy generation and storage, environmental protection, and more. It showcases how nanoscale FET devices are reshaping multiple industries. References: Chapters include references that encourage advanced readers to further explore key topics. Designed for a diverse audience, this book caters to students, academics and advanced readers interested in learning about Nano FET devices. Readership Students, academics and advanced readers

Book Carbon Nanotube Electronics

Download or read book Carbon Nanotube Electronics written by Ali Javey and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.

Book Carbon Nanotube Devices

Download or read book Carbon Nanotube Devices written by and published by John Wiley & Sons. This book was released on 2008-05-05 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following on from the first AMN volume, this handy reference and textbook examines the topic of nanosystem design in further detail. It explains the physical and chemical basics behind the design and fabrication of nanodevices, covering all important, recent advances in the field, while introducing nanosystems to less experienced readers. The result is an important source for a fast, accurate overview of the state of the art of nanosystem realization, summarizing further important literature.

Book Physics and Chemistry of Carbon Based Materials

Download or read book Physics and Chemistry of Carbon Based Materials written by Yoshihiro Kubozono and published by Springer. This book was released on 2019-03-26 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the fundamental science and applications of carbon-based materials, in particular fused polycyclic hydrocarbon, fullerene, diamond, carbides, graphite and graphene etc. During the past decade, these carbon-based materials have attracted much interest from many scientists and engineers because of their exciting physical properties and potential application toward electronic and energy devices. In this book, the fundamental theory referring to these materials, their syntheses and characterizations, the physical properties (physics), and the applications are fully described, which will contribute to an advancement of not only basic science in this research field but also technology using these materials. The book's targets are researchers and engineers in the field and graduate school students who specialize in physics, chemistry, and materials science. Thus, this book addresses the physics and chemistry of the principal materials in the twenty-first century.

Book Carbon Based Electronic Devices

Download or read book Carbon Based Electronic Devices written by Alberto Tagliaferro and published by MDPI. This book was released on 2020-02-14 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than 50 years, silicon has dominated the electronics industry. However, this growth will come to an end, due to resources limitations. Thus, research developments need to focus to alternative materials, with higher performance and better functionality. Current research achievements have indicated that carbon is one of the promising candidates for its exploitation in the electronics industry. Whereas the physical properties of graphite and diamond have been investigated for many years, the potential for electronic applications of other allotropes of carbon (fullerenes, carbon nanotubes, carbon nanofibres, carbon films, carbon balls and beads, carbon fibers, etc), has only been appreciated relatively recently. Carbon-based materials offer a number of exciting possibilities for new applications of electronic devices, due to their unique thermal and electrical properties. However, the success of carbon-based electronics depends on the rapid progress of the fabrication, doping and manipulation techniques. In this Special Issue, we focus on both insights and advancements in carbon-based electronics. We will also cover various topics ranging from synthesis, functionalisation, and characterisation of carbon-based materials, for their use in electronic devices, including advanced manufacturing techniques, such as 3D printing, ink-jet printing, spray-gun technique, etc.

Book iCEER2014 McMaster Digest

Download or read book iCEER2014 McMaster Digest written by Mohamed Bakr and published by Mohamed Bakr and Ahmed Elsharabasy. This book was released on 2014-11-18 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: International Conference on Engineering Education and Research

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carbon Nanomaterials Based on Graphene Nanosheets

Download or read book Carbon Nanomaterials Based on Graphene Nanosheets written by Ling Bing Kong and published by CRC Press. This book was released on 2017-03-27 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the discovery of graphene, it has become one of the most widely and extensively studied materials. This book aims to summarize the progress in synthesis, processing, characterization and applications of a special group of nanocarbon materials derived from graphene or graphene related derivatives by using various strategies in different forms. More specifically, three forms of macrosized materials are presented, i.e., one-dimension or 1D (fibers, wires, yarns, streads, etc.), two-dimension or 2D (films, membranes, papers, sheets, etc.) and three-dimension or 3D (bulk, hydrogels, aerogels, foams, sponges, etc.). Seven chapters are included with the first chapter serving to introduce the concept, definition, and nomenclature of graphene, graphene oxide and their derivatives. The main topics are covered in Chapters 2‒7. Although they have coherent connections, each chapter of them is designed such that they can be studied independently. The target readers of this book include undergraduate students, postgraduate students, researchers, designers, engineers, professors, and program/project managers from the fields of materials science and engineering, applied physics, chemical engineering, biomaterials, materials manufacturing and design, institutes, and research founding agencies.