EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

Download or read book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography written by Ying-Chieh Chen and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical spectroscopy. Theoretical spectra are calculated and demonstrate close agreement with experimental values, indicating that this fabrication process achieves excellent optical quality. X-ray microscopy provides non-destructive inspection of the fabricated crystals at nano-scale resolution. A reconstructed crystal model is generated by computed tomography which allows for comparison to a predicted structure's geometry and optical spectra. Using the polymer crystal as a template, electrodeposition is performed to completely infiltrate the crystal with Cu2O. After polymer removal the inverted Cu2O crystal exhibits a high peak reflectance at the predicted wavelength, indicating the structure is an exact inverse of the template. A conformal growth algorithm is developed for the commonly used chemical vapor deposition infiltration technique to explain growth results and verified experimentally with atomic layer deposition of oxide materials. Finally, a customized chemically amplified positive photoresist system and its processing steps are developed as a route to zero-shrinkage template material for high fidelity patterning of the designed interference patterns.

Book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography

Download or read book Fabrication and Characterization of Three Dimensional Photonic Crystals Generated by Multibeam Interference Lithography written by Ying-Chieh Chen and published by . This book was released on 2009 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multibeam interference lithography is investigated as a manufacturing technique for three-dimensional photonic crystal templates. In this research, optimization of the optical setup and the photoresist initiation system leads to a significant improvement of the optical quality of the crystal, as characterized by normal incidence optical spectroscopy. Theoretical spectra are calculated and demonstrate close agreement with experimental values, indicating that this fabrication process achieves excellent optical quality. X-ray microscopy provides non-destructive inspection of the fabricated crystals at nano-scale resolution. A reconstructed crystal model is generated by computed tomography which allows for comparison to a predicted structure's geometry and optical spectra. Using the polymer crystal as a template, electrodeposition is performed to completely infiltrate the crystal with Cu2O. After polymer removal the inverted Cu2O crystal exhibits a high peak reflectance at the predicted wavelength, indicating the structure is an exact inverse of the template. A conformal growth algorithm is developed for the commonly used chemical vapor deposition infiltration technique to explain growth results and verified experimentally with atomic layer deposition of oxide materials. Finally, a customized chemically amplified positive photoresist system and its processing steps are developed as a route to zero-shrinkage template material for high fidelity patterning of the designed interference patterns.

Book Photonic Crystals

    Book Details:
  • Author : Kurt Busch
  • Publisher : John Wiley & Sons
  • Release : 2006-05-12
  • ISBN : 352760717X
  • Pages : 380 pages

Download or read book Photonic Crystals written by Kurt Busch and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of the contributions in this topically edited book stems from the priority program SPP 1113 "Photonische Kristalle" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers. Illustrated in full color, this book is not only of interest to advanced students and researchers in physics, electrical engineering, and material science, but also to company R&D departments involved in photonic crystal-related technological developments.

Book Design  Fabrication and Characterization of Three dimensional Photonic Crystals

Download or read book Design Fabrication and Characterization of Three dimensional Photonic Crystals written by Lifeng Chen and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Three dimensional Photonic Crystals Via Direct Laser Writing

Download or read book Three dimensional Photonic Crystals Via Direct Laser Writing written by Markus Deubel and published by . This book was released on 2006 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Liquid Crystal Photonics

Download or read book Computational Liquid Crystal Photonics written by Salah Obayya and published by John Wiley & Sons. This book was released on 2016-04-04 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical computers and photonic integrated circuits in high capacity optical networks are hot topics, attracting the attention of expert researchers and commercial technology companies. Optical packet switching and routing technologies promise to provide a more efficient source of power, and footprint scaling with increased router capacity; integrating more optical processing elements into the same chip to increase on-chip processing capability and system intelligence has become a priority. This book is an in-depth look at modelling techniques and the simulation of a wide range of liquid crystal based modern photonic devices with enhanced high levels of flexible integration and enhanced power processing. It covers the physics of liquid crystal materials; techniques required for modelling liquid crystal based devices; the state-of-the art liquid crystal photonic based applications for telecommunications such as couplers, polarization rotators, polarization splitters and multiplexer-demultiplexers; liquid core photonic crystal fiber (LC-PCF) sensors including biomedical and temperature sensors; and liquid crystal photonic crystal based encryption systems for security applications. Key features Offers a unique source of in-depth learning on the fundamental principles of computational liquid crystal photonics. Explains complex concepts such as photonic crystals, liquid crystals, waveguides and modes, and frequency- and time-domain techniques used in the design of liquid crystal photonic crystal photonic devices in terms that are easy to understand. Demonstrates the useful properties of liquid crystals in a diverse and ever-growing list of technological applications. Requires only a foundational knowledge of mathematics and physics.

Book Fabrication and Characterization of Three dimensional Infrarer Photonic Crystals

Download or read book Fabrication and Characterization of Three dimensional Infrarer Photonic Crystals written by Lisa Zavieh and published by . This book was released on 1999 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design  Fabrication and Characterization of Three dimensional Chiral Photonic Crystals

Download or read book Design Fabrication and Characterization of Three dimensional Chiral Photonic Crystals written by Michael Thiel and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Characterization in the Micro Nano Range

Download or read book Fabrication and Characterization in the Micro Nano Range written by Fernando A. Lasagni and published by Springer Science & Business Media. This book was released on 2011-03-23 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows an update in the field of micro/nano fabrications techniques of two and three dimensional structures as well as ultimate three dimensional characterization methods from the atom range to the micro scale. Several examples are presented showing their direct application in different technological fields such as microfluidics, photonics, biotechnology and aerospace engineering, between others. The effects of the microstructure and topography on the macroscopic properties of the studied materials are discussed, together with a detailed review of 3D imaging techniques.

Book Photonics  Volume 2

Download or read book Photonics Volume 2 written by David L. Andrews and published by John Wiley & Sons. This book was released on 2015-02-24 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.

Book Multi beam interference based Methodology for the Fabrication of Photonic Crystal Structures

Download or read book Multi beam interference based Methodology for the Fabrication of Photonic Crystal Structures written by Justin L. Stay and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of techniques are available to enable the fabrication of photonic crystal structures. Multi-beam-interference lithography (MBIL) is a relatively new technique which offers many advantages over more traditional means of fabrication. Unlike the more common fabrication methods such as optical and electron-beam lithography, MBIL is a method that can produce both two- and three-dimensional large-area photonic crystal structures for use in the infrared and visible light regimes. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, there has been an incomplete understanding of MBIL itself. The research in this thesis focuses on providing a more complete, systematic description of MBIL in order to demonstrate its full capabilities.

Book Mid infrared Characterization of Two dimensional Photonic Crystal Slabs Fabricated in Silicon with Laser Interference Lithography

Download or read book Mid infrared Characterization of Two dimensional Photonic Crystal Slabs Fabricated in Silicon with Laser Interference Lithography written by Liviu Prodan and published by . This book was released on 2008 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fabrication and Chemical Modifications of Photonic Crystals Produced by Multiphoton Lithography

Download or read book Fabrication and Chemical Modifications of Photonic Crystals Produced by Multiphoton Lithography written by Vincent W. Chen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the fabrication methodology of polymeric photonic crystals operating in the visible to near infrared regions and the correlation between the chemical deposition morphologies and the resultant photonic stopband enhancements of photonic crystals. Multiphoton lithography (MPL) is a powerful approach to the fabrication of polymeric 3D micro- and nano-structures with a typical minimum feature size ~ 200 nm. The completely free-form 3D fabrication capability of MPL is very well suited to the formation of tailored photonic crystals (PCs), including structures containing well defined defects. Such structures are of considerable current interest as micro-optical devices for their filtering, stop-band, dispersion, resonator, or waveguiding properties. More specifically, the stop-band characteristics of polymer PCs can be finely controlled via nanoscale changes in rod spacings and the chemical functionalities at the polymer surface can be readily utilized to impart new optical properties. Nanoscale features as small as 65 ± 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the visible to near-infrared spectral region. 85 ± 4 nm features were formed using swollen gel photoresist by 730 nm excitation MPL. An index matching oil was used to induce chemical swelling of gel resists prior to MPL fabrication. When swollen matrices were subjected to multiphoton excitation, a similar excitation volume is achieved as in normal unswollen resins. However, upon deswelling of the photoresist following development a substantial reduction in feature size was obtained. PCs with high structural fidelity across 100 æm x 100 æm x 32 layers exhibited strong reflectivity (>60% compared to a gold mirror) in the near infrared region. The positions of the stop-bands were tuned by varying the swelling time, the exposure power (which modifies the feature sizes), and the layer spacing between rods. Silver coatings have been applied to PCs with a range of coverage densities and thicknesses using electroless deposition. Sparse coatings resulted in enhanced reflectivity for the stop band located at ~5 æm, suggesting improved interface reflectivity inside the photonic crystal due to the Ag coating. Thick coatings resulted in plasmonic bandgap behavior with broadband reflectivity enhancement and PC lattice related bandedge at 1.75 æm. Conformal titania coatings were grown onto the PCs via a surface sol-gel method. Uniform and smooth titania coatings were achieved, resulting in systematically red-shifted stopbands from their initial positions with increasing thicknesses, corresponding to the increased effective refractive index of the PC. High quality titania shell structures with modest stopbands were obtained after polymer removal. Gold replica structures were obtained by electroless deposition on the silica cell walls of naturally occurring diatoms and the subsequent silica removal. The micron-scaled periodic hole lattice originated from the diatom resulted in surface plasmon interferences when excited by infrared frequencies. The hole patterns were characterized and compared with hexagonal hole arrays fabricated by focused ion beam etching of similarly gold plated substrate. Modeling of the hole arrays concluded that while diatom replicas lack long-ranged periodicity, the local hole to hole spacings were sufficient to generate enhanced transmission of 13% at 4.2 æm. The work presented herein is a step towards the development of PCs with new optical and chemical functionalities. The ability to rapidly prototype polymeric PCs of various lattice parameters using MPL combined with facile coating chemistries to create structures with the desired optical properties offers a powerful means to produce tailored high performance photonic crystal devices.

Book Fabrication of Two  and Three Dimensional Photonic Crystals and Photonic Quasi Crystals by Interference Technique

Download or read book Fabrication of Two and Three Dimensional Photonic Crystals and Photonic Quasi Crystals by Interference Technique written by Ngoc Diep Lai and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fabrication of Two- and Three-Dimensional Photonic Crystals and Photonic Quasi-Crystals by Interference Technique.

Book The Fabrication and Assessment of Three Dimensional Photonic Crystals

Download or read book The Fabrication and Assessment of Three Dimensional Photonic Crystals written by David Neil.. Sharp and published by . This book was released on 2001 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: