EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Extreme Statistics in Nanoscale Memory Design

Download or read book Extreme Statistics in Nanoscale Memory Design written by Amith Singhee and published by Springer Science & Business Media. This book was released on 2010-09-09 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.

Book Extreme Statistics in Nanoscale Memory Design

Download or read book Extreme Statistics in Nanoscale Memory Design written by Amith Singhee and published by Springer. This book was released on 2010-09-17 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge exists: you only have to ?nd it VLSI design has come to an important in?ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri?ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 5–6s (0.

Book Machine Learning in VLSI Computer Aided Design

Download or read book Machine Learning in VLSI Computer Aided Design written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2019-03-15 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center

Book Green Computing with Emerging Memory

Download or read book Green Computing with Emerging Memory written by Takayuki Kawahara and published by Springer Science & Business Media. This book was released on 2012-09-26 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computing innovation, using non-volatile memory for a sustainable world. It appeals to both computing engineers and device engineers by describing a new means of lower power computing innovation, without sacrificing performance over conventional low-voltage operation. Readers will be introduced to methods of design and implementation for non-volatile memory which allow computing equipment to be turned off normally when not in use and to be turned on instantly to operate with full performance when needed.

Book Evolvable Hardware

    Book Details:
  • Author : Martin A. Trefzer
  • Publisher : Springer
  • Release : 2015-09-14
  • ISBN : 3662446162
  • Pages : 432 pages

Download or read book Evolvable Hardware written by Martin A. Trefzer and published by Springer. This book was released on 2015-09-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the basic theory, practical details and advanced research of the implementation of evolutionary methods on physical substrates. Most of the examples are from electronic engineering applications, including transistor-level design and system-level implementation. The authors present an overview of the successes achieved, and the book will act as a point of reference for both academic and industrial researchers.

Book The Fourth Terminal

Download or read book The Fourth Terminal written by Sylvain Clerc and published by Springer Nature. This book was released on 2020-04-25 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the advantages and challenges of Body-Biasing for integrated circuits and systems, together with the deployment of the design infrastructure needed to generate this Body-Bias voltage. These new design solutions enable state of the art energy efficiency and system flexibility for the latest applications, such as Internet of Things and 5G communications.

Book CMOSET 2011 VLSI Circuits and Systems Track Presentation Slides

Download or read book CMOSET 2011 VLSI Circuits and Systems Track Presentation Slides written by CMOS Emerging Technologies Research and published by CMOS Emerging Technologies. This book was released on with total page 751 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Semiconductor Memories

Download or read book Nanoscale Semiconductor Memories written by Santosh K. Kurinec and published by CRC Press. This book was released on 2017-07-28 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Book Nanoscale Memory Repair

Download or read book Nanoscale Memory Repair written by Masashi Horiguchi and published by Springer Science & Business Media. This book was released on 2011-01-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.

Book Emerging Nanoscale Memory Technologies

Download or read book Emerging Nanoscale Memory Technologies written by and published by . This book was released on 2014 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design Exploration of Emerging Nano scale Non volatile Memory

Download or read book Design Exploration of Emerging Nano scale Non volatile Memory written by Hao Yu and published by Springer Science & Business. This book was released on 2014-04-18 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices. Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices. Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design. • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design and hybrid NVM memory system optimization; • Provides both theoretical analysis and practical examples to illustrate design methodologies; • Illustrates design and analysis for recent developments in spin-toque-transfer, domain-wall racetrack and memristors.

Book Nanoscale Semiconductor Memories

Download or read book Nanoscale Semiconductor Memories written by Santosh K. Kurinec and published by CRC Press. This book was released on 2017-07-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale memories are used everywhere. From your iPhone to a supercomputer, every electronic device contains at least one such type. With coverage of current and prototypical technologies, Nanoscale Semiconductor Memories: Technology and Applications presents the latest research in the field of nanoscale memories technology in one place. It also covers a myriad of applications that nanoscale memories technology has enabled. The book begins with coverage of SRAM, addressing the design challenges as the technology scales, then provides design strategies to mitigate radiation induced upsets in SRAM. It discusses the current state-of-the-art DRAM technology and the need to develop high performance sense amplifier circuitry. The text then covers the novel concept of capacitorless 1T DRAM, termed as Advanced-RAM or A-RAM, and presents a discussion on quantum dot (QD) based flash memory. Building on this foundation, the coverage turns to STT-RAM, emphasizing scalable embedded STT-RAM, and the physics and engineering of magnetic domain wall "racetrack" memory. The book also discusses state-of-the-art modeling applied to phase change memory devices and includes an extensive review of RRAM, highlighting the physics of operation and analyzing different materials systems currently under investigation. The hunt is still on for universal memory that fits all the requirements of an "ideal memory" capable of high-density storage, low-power operation, unparalleled speed, high endurance, and low cost. Taking an interdisciplinary approach, this book bridges technological and application issues to provide the groundwork for developing custom designed memory systems.

Book Embedded Memories for Nano Scale VLSIs

Download or read book Embedded Memories for Nano Scale VLSIs written by Kevin Zhang and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.

Book Dependable Multicore Architectures at Nanoscale

Download or read book Dependable Multicore Architectures at Nanoscale written by Marco Ottavi and published by Springer. This book was released on 2017-08-28 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the dependability challenges in today's advanced computing systems. It is an in-depth discussion of all the technological and design-level techniques that may be used to overcome these issues and analyzes various dependability-assessment methods. The impact of individual application scenarios on the definition of challenges and solutions is considered so that the designer can clearly assess the problems and adjust the solution based on the specifications in question. The book is composed of three sections, beginning with an introduction to current dependability challenges arising in complex computing systems implemented with nanoscale technologies, and of the effect of the application scenario. The second section details all the fault-tolerance techniques that are applicable in the manufacture of reliable advanced computing devices. Different levels, from technology-level fault avoidance to the use of error correcting codes and system-level checkpointing are introduced and explained as applicable to the different application scenario requirements. Finally the third section proposes a roadmap of future trends in and perspectives on the dependability and manufacturability of advanced computing systems from the special point of view of industrial stakeholders. Dependable Multicore Architectures at Nanoscale showcases the original ideas and concepts introduced into the field of nanoscale manufacturing and systems reliability over nearly four years of work within COST Action IC1103 MEDIAN, a think-tank with participants from 27 countries. Academic researchers and graduate students working in multi-core computer systems and their manufacture will find this book of interest as will industrial design and manufacturing engineers working in VLSI companies.

Book Systems Engineering for Microscale and Nanoscale Technologies

Download or read book Systems Engineering for Microscale and Nanoscale Technologies written by M. Ann Garrison Darrin and published by CRC Press. This book was released on 2011-12-13 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: To realize the full potential of micro- and nanoscale devices in system building, it is critical to develop systems engineering methodologies that successfully integrate stand-alone, small-scale technologies that can effectively interface with the macro world. So how do we accomplish this? Systems Engineering for Microscale and Nanoscale Technologies is perhaps the first handbook to concentrate on the use of systems engineering at the micro and nano levels. One major roadblock to this process is a generally limited understanding of exactly how to apply systems engineering principles and management processes to the integration of newer, small-scale technologies. Focusing on this problem of consolidating disciplines, contributors illustrate the interdependence between nanotechnology and systems engineering, making it easier for experts from these two distinct fields to understand and optimize their application of the other. To help readers from these different domains successfully combine heterogeneous, mixed-scale elements, contributors assess the evolution of micro- and nanoscale technology development and its impact on everything from laboratory concepts to actualized products in health, automotive, aerospace, communication, and many other fields. The book outlines new approaches to developing smart systems. It also clarifies the capabilities of micro- and nanotechnologies, including how they interface with each other and with macro systems. Edited by highly regarded technologists, this introductory resource includes insightful contributions from leading minds in areas including nanotechnology, physics, systems engineering, materials science, chemistry, electrical engineering, and futurism, among others. The result is a masterfully designed, interrelated collection of multidisciplinary expertise to help readers optimize future technologies. About the Editors: M. Ann Garrison Darrin is managing executive of the Space Department at the Applied Physics Laboratory at The Johns Hopkins University. Janet L. Barth is chief of the Electrical Engineering Division (EED) at NASA’s Goddard Space Flight Center (GSFC).

Book Nanoscale Communication Networks

Download or read book Nanoscale Communication Networks written by Stephen F. Bush and published by Artech House. This book was released on 2010 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: A highly useful resource for professionals and students alike, this cutting-edge, first-of-its-kind book provides a thorough introduction to nanoscale communication networks. Written in a clear tutorial style, this volume covers a wide range of the most important topics in the area, from molecular communication and carbon nanotube nano-networks, to nanoscale quantum networking and the future direction of nano networks. Moreover, the book features numerous exercise problems at the end of each chapter to ensure a solid understanding of the material.

Book Bio Inspired and Nanoscale Integrated Computing

Download or read book Bio Inspired and Nanoscale Integrated Computing written by Mary Mehrnoosh Eshaghian-Wilner and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.