Download or read book Extracting Mining and Predicting Users Interests from Social Media written by Fattane Zarrinkalam and published by . This book was released on 2020-11-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining user interests from user behavioral data is critical for many applications. Based on user interests, service providers like advertisers can significantly reduce service delivery costs by offering the most relevant products to their customers. The challenge of accurately and efficiently identifying user interests has been the subject of increasing attention for several years. With the emergence and growing popularity of social media, many users are extensively engaged in social media applications to express their feelings and views about a wide variety of social events/topics as they happen in real time. The abundance of user generated content on social media provides the opportunity to build models that are able to accurately and effectively extract, mine, and predict users' interests with the hopes of enabling more effective user engagement, better quality delivery of appropriate services, and higher user satisfaction. While traditional methods for building user profiles relied on AI-based preference elicitation techniques that could have been considered intrusive and undesirable by the users, more recent advances are focused on a non-intrusive yet accurate way of determining users' interests and preferences. In this monograph, the authors cover five important subjects related to the mining of user interests from social media: (1) the foundations of social user interest modeling, (2) techniques that have been adopted or proposed for mining user interests, (3) different evaluation methodologies and benchmark datasets, (4) different applications that have been taking advantage of user interest mining from social media platforms, and (5) existing challenges, open research questions, and opportunities for further work. The monograph is a valuable resource for those who have familiarity with social media mining and the basics of information retrieval (IR) techniques.
Download or read book Semantic AI in Knowledge Graphs written by Sanju Tiwari and published by CRC Press. This book was released on 2023-08-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent combinations of semantic technology and artificial intelligence (AI) present new techniques to build intelligent systems that identify more precise results. Semantic AI in Knowledge Graphs locates itself at the forefront of this novel development, uncovering the role of machine learning to extend the knowledge graphs by graph mapping or corpus-based ontology learning. Securing efficient results via the combination of symbolic AI and statistical AI such as entity extraction based on machine learning, text mining methods, semantic knowledge graphs, and related reasoning power, this book is the first of its kind to explore semantic AI and knowledge graphs. A range of topics are covered, from neuro-symbolic AI, explainable AI and deep learning to knowledge discovery and mining, and knowledge representation and reasoning. A trailblazing exploration of semantic AI in knowledge graphs, this book is a significant contribution to both researchers in the field of AI and data mining as well as beginner academicians.
Download or read book Social Network Mining Analysis and Research Trends Techniques and Applications written by Ting, I-Hsien and published by IGI Global. This book was released on 2011-12-31 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers current research trends in the area of social networks analysis and mining, sharing research from experts in the social network analysis and mining communities, as well as practitioners from social science, business, and computer science"--Provided by publisher.
Download or read book Survey of Text Mining written by Michael W. Berry and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
Download or read book Social Media Mining written by Reza Zafarani and published by Cambridge University Press. This book was released on 2014-04-28 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates social media, social network analysis, and data mining to provide an understanding of the potentials of social media mining.
Download or read book Trends and Applications in Knowledge Discovery and Data Mining written by Xiao-Li Li and published by Springer. This book was released on 2015-11-25 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015. The 23 revised papers presented were carefully reviewed and selected from 57 submissions. The workshops affiliated with PAKDD 2015 include: Pattern Mining and Application of Big Data (BigPMA), Quality Issues, Measures of Interestingness and Evaluation of data mining models (QIMIE), Data Analytics for Evidence-based Healthcare (DAEBH), Vietnamese Language and Speech Processing (VLSP).
Download or read book Natural Language Processing for Social Media written by Atefeh Farzindar and published by Morgan & Claypool Publishers. This book was released on 2017-12-15 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.
Download or read book Social Media Data Mining and Analytics written by Gabor Szabo and published by John Wiley & Sons. This book was released on 2018-09-19 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.
Download or read book Intelligent Decision Technology Support in Practice written by Jeffrey W. Tweedale and published by Springer. This book was released on 2015-08-22 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of innovative chapters emanating from topics raised during the 5th KES International Conference on Intelligent Decision Technologies (IDT), held during 2013 at Sesimbra, Portugal. The authors were invited to expand their original papers into a plethora of innovative chapters espousing IDT methodologies and applications. This book documents leading-edge contributions, representing advances in Knowledge-Based and Intelligent Information and Engineering System. It acknowledges that researchers recognize that society is familiar with modern Advanced Information Processing and increasingly expect richer IDT systems. Each chapter concentrates on the theory, design, development, implementation, testing or evaluation of IDT techniques or applications. Anyone that wants to work with IDT or simply process knowledge should consider reading one or more chapters and focus on their technique of choice. Most readers will benefit from reading additional chapters to access alternative technique that often represent alternative approaches. This book is suitable for anyone interested in or already working with IDT or Intelligent Decision Support Systems. It is also suitable for students and researchers seeking to learn more about modern Artificial Intelligence and Computational Intelligence techniques that support decision-making in modern computer systems.
Download or read book Advances in Knowledge Discovery and Data Mining written by Joshua Zhexue Huang and published by Springer Science & Business Media. This book was released on 2011-05-09 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNAI 6634 and 6635 constitutes the refereed proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2011, held in Shenzhen, China in May 2011. The total of 32 revised full papers and 58 revised short papers were carefully reviewed and selected from 331 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD-related areas including data mining, machine learning, artificial intelligence and pattern recognition, data warehousing and databases, statistics, knoweldge engineering, behavior sciences, visualization, and emerging areas such as social network analysis.
Download or read book Social Media Data Mining and Analytics written by Gabor Szabo and published by John Wiley & Sons. This book was released on 2018-10-23 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.
Download or read book Data Mining Approaches for Big Data and Sentiment Analysis in Social Media written by Brij Gupta and published by . This book was released on 2021 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--
Download or read book Advances in Information and Communication Technology written by Phung Trung Nghia and published by Springer Nature. This book was released on 2024-01-03 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains four keynote abstracts and 83 best peer-reviewed papers selected from the 179 submissions at the 2nd International Conference on Advances in ICT (ICTA 2023), which share research results and practical applications in ICT research and education. Technological changes and digital transformation that have taken place over the past decade have had significant impacts on all economic and social sectors. Information and Communication Technology (ICT) in general and artificial intelligence (AI) in particular have driven socio-economic growth. The topics cover all ICT-related areas and their contributions to socio-economic development, focusing on the most advanced technologies, such as AI. Researchers and practitioners in academia and industry use the books as a valuable reference for their research activities, teaching, learning, and advancing current technologies. The Conference is hosted by Thai Nguyen University of Information and Communication Technology (ICTU).
Download or read book Mining Complex Networks written by Bogumil Kaminski and published by CRC Press. This book was released on 2021-12-14 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumił Kamiński is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumił is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Paweł Prałat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. François Théberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.
Download or read book XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 written by Laura M. Roa Romero and published by Springer Science & Business Media. This book was released on 2013-10-01 with total page 1978 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theme of MEDICON 2013 is "Research and Development of Technology for Sustainable Healthcare". This decade is being characterized by the appearance and use of emergent technologies under development. This situation has produced a tremendous impact on Medicine and Biology from which it is expected an unparalleled evolution in these disciplines towards novel concept and practices. The consequence will be a significant improvement in health care and well-fare, i.e. the shift from a reactive medicine to a preventive medicine. This shift implies that the citizen will play an important role in the healthcare delivery process, what requires a comprehensive and personalized assistance. In this context, society will meet emerging media, incorporated to all objects, capable of providing a seamless, adaptive, anticipatory, unobtrusive and pervasive assistance. The challenge will be to remove current barriers related to the lack of knowledge required to produce new opportunities for all the society, while new paradigms are created for this inclusive society to be socially and economically sustainable, and respectful with the environment. In this way, these proceedings focus on the convergence of biomedical engineering topics ranging from formalized theory through experimental science and technological development to practical clinical applications.
Download or read book Explainable and Interpretable Models in Computer Vision and Machine Learning written by Hugo Jair Escalante and published by Springer. This book was released on 2018-11-29 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Download or read book Database Systems for Advanced Applications written by Selçuk Candan and published by Springer. This book was released on 2017-03-20 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 10177 and 10178 constitutes the refereed proceedings of the 22nd International Conference on Database Systems for Advanced Applications, DASFAA 2017, held in Suzhou, China, in March 2017. The 73 full papers, 9 industry papers, 4 demo papers and 3 tutorials were carefully selected from a total of 300 submissions. The papers are organized around the following topics: semantic web and knowledge management; indexing and distributed systems; network embedding; trajectory and time series data processing; data mining; query processing and optimization; text mining; recommendation; security, privacy, senor and cloud; social network analytics; map matching and spatial keywords; query processing and optimization; search and information retrieval; string and sequence processing; stream date processing; graph and network data processing; spatial databases; real time data processing; big data; social networks and graphs.