Download or read book Causal Learning written by and published by Academic Press. This book was released on 1996-09-26 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Psychology of Learning and Motivation publishes empirical and theoretical contributions in cognitive and experimental psychology, ranging from classical and instrumental conditions to complex learning and problem solving. This guest-edited special volume is devoted to current research and discussion on associative versus cognitive accounts of learning. Written by major investigators in the field, topics include all aspects of causal learning in an open forum in which different approaches are brought together. - Up-to-date review of the literature - Discusses recent controversies - Presents major advances in understanding causal learning - Synthesizes contrasting approaches - Includes important empirical contributions - Written by leading researchers in the field
Download or read book Causal Cognition in Humans and Machines written by Andrew Tolmie and published by Frontiers Media SA. This book was released on 2022-02-02 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Causal Models written by Steven Sloman and published by Oxford University Press. This book was released on 2005-07-28 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human beings are active agents who can think. To understand how thought serves action requires understanding how people conceive of the relation between cause and effect, between action and outcome. In cognitive terms, how do people construct and reason with the causal models we use to represent our world? A revolution is occurring in how statisticians, philosophers, and computer scientists answer this question. Those fields have ushered in new insights about causal models by thinking about how to represent causal structure mathematically, in a framework that uses graphs and probability theory to develop what are called causal Bayesian networks. The framework starts with the idea that the purpose of causal structure is to understand and predict the effects of intervention. How does intervening on one thing affect other things? This is not a question merely about probability (or logic), but about action. The framework offers a new understanding of mind: Thought is about the effects of intervention and cognition is thus intimately tied to actions that take place either in the actual physical world or in imagination, in counterfactual worlds. The book offers a conceptual introduction to the key mathematical ideas, presenting them in a non-technical way, focusing on the intuitions rather than the theorems. It tries to show why the ideas are important to understanding how people explain things and why thinking not only about the world as it is but the world as it could be is so central to human action. The book reviews the role of causality, causal models, and intervention in the basic human cognitive functions: decision making, reasoning, judgment, categorization, inductive inference, language, and learning. In short, the book offers a discussion about how people think, talk, learn, and explain things in causal terms, in terms of action and manipulation.
Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Download or read book Thinking With Data written by Marsha C. Lovett and published by Psychology Press. This book was released on 2012-08-21 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters in Thinking With Data are based on presentations given at the 33rd Carnegie Symposium on Cognition. The Symposium was motivated by the confluence of three emerging trends: (1) the increasing need for people to think effectively with data at work, at school, and in everyday life, (2) the expanding technologies available to support people as they think with data, and (3) the growing scientific interest in understanding how people think with data. What is thinking with data? It is the set of cognitive processes used to identify, integrate, and communicate the information present in complex numerical, categorical, and graphical data. This book offers a multidisciplinary presentation of recent research on the topic. Contributors represent a variety of disciplines: cognitive and developmental psychology; math, science, and statistics education; and decision science. The methods applied in various chapters similarly reflect a scientific diversity, including qualitative and quantitative analysis, experimentation and classroom observation, computational modeling, and neuroimaging. Throughout the book, research results are presented in a way that connects with both learning theory and instructional application. The book is organized in three sections: Part I focuses on the concepts of uncertainty and variation and on how people understand these ideas in a variety of contexts. Part II focuses on how people work with data to understand its structure and draw conclusions from data either in terms of formal statistical analyses or informal assessments of evidence. Part III focuses on how people learn from data and how they use data to make decisions in daily and professional life.
Download or read book Time and Causality Across the Sciences written by Samantha Kleinberg and published by Cambridge University Press. This book was released on 2019-09-26 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores the critical role time plays in our understanding of causality, across psychology, biology, physics and the social sciences.
Download or read book Causal Learning written by Alison Gopnik and published by Oxford University Press. This book was released on 2007-03-22 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding causal structure is a central task of human cognition. Causal learning underpins the development of our concepts and categories, our intuitive theories, and our capacities for planning, imagination and inference. During the last few years, there has been an interdisciplinary revolution in our understanding of learning and reasoning: Researchers in philosophy, psychology, and computation have discovered new mechanisms for learning the causal structure of the world. This new work provides a rigorous, formal basis for theory theories of concepts and cognitive development, and moreover, the causal learning mechanisms it has uncovered go dramatically beyond the traditional mechanisms of both nativist theories, such as modularity theories, and empiricist ones, such as association or connectionism.
Download or read book Complex Problem Solving Beyond the Psychometric Approach written by Wolfgang Schoppek and published by Frontiers Media SA. This book was released on 2018-09-28 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex problem solving (CPS) and related topics such as dynamic decision-making (DDM) and complex dynamic control (CDC) represent multifaceted psychological phenomena. In abroad sense, CPS encompasses learning, decision-making, and acting in complex and dynamic situations. Moreover, solutions to problems that people face in such situations are often generated in teams or groups. This adds another layer of complexity to the situation itself because of the emerging issues that arise from the social dynamics of group interactions. This framing of CPS means that it is not a single construct that can be measured by using a particular type of CPS task (e.g. minimal complex system tests), which is a view taken by the psychometric community. The proposed approach taken here is that because CPS is multifaceted, multiple approaches need to be taken to fully capture and understand what it is and how the different cognitive processes associated with it complement each other.Thus, this Research Topic is aimed at showcasing the latest work in the fields of CPS, as well as DDM and CDC that takes a holist approach to investigating and theorizing about these abilities. The collection of articles encompasses conceptual approaches as well as experimental and correlational studies involving established or new tools to examine CPS, DDM and CDC. This work contributes to answering questions about what strategies and what general knowledge can be transferred from one type of complex and dynamic situation to another, what learning conditions result in transferable knowledge and skills, and how these features can be trained.
Download or read book The Mind s Arrows written by Clark N. Glymour and published by MIT Press. This book was released on 2001 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title provides an introduction to assumptions, algorithms, and techniques of causal Bayes nets and graphical causal models in the context of psychological examples. It demonstrates their potential as a powerful tool for guiding experimental inquiry.
Download or read book Bayesian Rationality written by Mike Oaksford and published by Oxford University Press. This book was released on 2007-02-22 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: For almost 2,500 years, the Western concept of what is to be human has been dominated by the idea that the mind is the seat of reason - humans are, almost by definition, the rational animal. In this text a more radical suggestion for explaining these puzzling aspects of human reasoning is put forward.
Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
Download or read book The Oxford Handbook of the Development of Imagination written by Marjorie Taylor and published by Oxford University Press. This book was released on 2013-04-02 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Children are widely celebrated for their imaginations, but developmental research on this topic has often been fragmented or narrowly focused on fantasy. However, there is growing appreciation for the role that imagination plays in cognitive and emotional development, as well as its link with children's understanding of the real world. With their imaginations, children mentally transcend time, place, and/or circumstance to think about what might have been, plan and anticipate the future, create fictional relationships and worlds, and consider alternatives to the actual experiences of their lives. The Oxford Handbook of the Development of Imagination provides a comprehensive overview of this broad new perspective by bringing together leading researchers whose findings are moving the study of imagination from the margins of mainstream psychology to a central role in current efforts to understand human thought. The topics covered include fantasy-reality distinctions, pretend play, magical thinking, narrative, anthropomorphism, counterfactual reasoning, mental time travel, creativity, paracosms, imaginary companions, imagination in non-human animals, the evolution of imagination, autism, dissociation, and the capacity to derive real life resilience from imaginative experiences. Many of the chapters include discussions of the educational, clinical, and legal implications of the research findings and special attention is given to suggestions for future research.
Download or read book The Oxford Handbook of Causal Reasoning written by Michael Waldmann and published by Oxford University Press. This book was released on 2017-03-30 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Although causal reasoning is a component of most of our cognitive functions, it has been neglected in cognitive psychology for many decades. The Oxford Handbook of Causal Reasoning offers a state-of-the-art review of the growing field, and its contribution to the world of cognitive science. The Handbook begins with an introduction of competing theories of causal learning and reasoning. In the next section, it presents research about basic cognitive functions involved in causal cognition, such as perception, categorization, argumentation, decision-making, and induction. The following section examines research on domains that embody causal relations, including intuitive physics, legal and moral reasoning, psychopathology, language, social cognition, and the roles of space and time. The final section presents research from neighboring fields that study developmental, phylogenetic, and cultural differences in causal cognition. The chapters, each written by renowned researchers in their field, fill in the gaps of many cognitive psychology textbooks, emphasizing the crucial role of causal structures in our everyday lives. This Handbook is an essential read for students and researchers of the cognitive sciences, including cognitive, developmental, social, comparative, and cross-cultural psychology; philosophy; methodology; statistics; artificial intelligence; and machine learning.
Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Download or read book The Probabilistic Mind written by Nick Chater and published by OUP Oxford. This book was released on 2008 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Probabilistic Mind is a follow-up to the influential and highly cited Rational Models of Cognition (OUP, 1998). It brings together developmetns in understanding how, and how far, high-level cognitive processes can be understood in rational terms, and particularly using probabilistic Bayesian methods.
Download or read book Cross Modal Learning Adaptivity Prediction and Interaction written by Jianwei Zhang and published by Frontiers Media SA. This book was released on 2023-02-02 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this Research Topic is to reflect and discuss links between neuroscience, psychology, computer science and robotics with regards to the topic of cross-modal learning which has, in recent years, emerged as a new area of interdisciplinary research. The term cross-modal learning refers to the synergistic synthesis of information from multiple sensory modalities such that the learning that occurs within any individual sensory modality can be enhanced with information from one or more other modalities. Cross-modal learning is a crucial component of adaptive behavior in a continuously changing world, and examples are ubiquitous, such as: learning to grasp and manipulate objects; learning to walk; learning to read and write; learning to understand language and its referents; etc. In all these examples, visual, auditory, somatosensory or other modalities have to be integrated, and learning must be cross-modal. In fact, the broad range of acquired human skills are cross-modal, and many of the most advanced human capabilities, such as those involved in social cognition, require learning from the richest combinations of cross-modal information. In contrast, even the very best systems in Artificial Intelligence (AI) and robotics have taken only tiny steps in this direction. Building a system that composes a global perspective from multiple distinct sources, types of data, and sensory modalities is a grand challenge of AI, yet it is specific enough that it can be studied quite rigorously and in such detail that the prospect for deep insights into these mechanisms is quite plausible in the near term. Cross-modal learning is a broad, interdisciplinary topic that has not yet coalesced into a single, unified field. Instead, there are many separate fields, each tackling the concerns of cross-modal learning from its own perspective, with currently little overlap. We anticipate an accelerating trend towards integration of these areas and we intend to contribute to that integration. By focusing on cross-modal learning, the proposed Research Topic can bring together recent progress in artificial intelligence, robotics, psychology and neuroscience.
Download or read book The Oxford Handbook of Causal Reasoning written by Michael Waldmann and published by Oxford University Press. This book was released on 2017 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causal reasoning is one of our most central cognitive competencies, enabling us to adapt to our world. Causal knowledge allows us to predict future events, or diagnose the causes of observed facts. We plan actions and solve problems using knowledge about cause-effect relations. Without our ability to discover and empirically test causal theories, we would not have made progress in various empirical sciences. The handbook brings together the leading researchers in the field of causal reasoning and offers state-of-the-art presentations of theories and research. It provides introductions of competing theories of causal reasoning, and discusses its role in various cognitive functions and domains. The final section presents research from neighboring fields.