EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Experimental study of thin liquid films falling down a vertical surface

Download or read book Experimental study of thin liquid films falling down a vertical surface written by Alexander Knaani and published by . This book was released on 1993 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Study of Thin Liquid Falling Down a Vertical Surface

Download or read book Experimental Study of Thin Liquid Falling Down a Vertical Surface written by Alexander Knaani and published by . This book was released on 1993 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Study of Vertical Falling Water Films in the Wavy Laminar Flow Regime

Download or read book An Experimental Study of Vertical Falling Water Films in the Wavy Laminar Flow Regime written by Winston Walker Potts and published by . This book was released on 1978 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Falling Liquid Films

    Book Details:
  • Author : S. Kalliadasis
  • Publisher : Springer Science & Business Media
  • Release : 2011-09-24
  • ISBN : 1848823673
  • Pages : 446 pages

Download or read book Falling Liquid Films written by S. Kalliadasis and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.

Book Characteristics and Applications of Thin Liquid Films Flowing Down High Curvature Surfaces

Download or read book Characteristics and Applications of Thin Liquid Films Flowing Down High Curvature Surfaces written by Abolfazl Sadeghpour and published by . This book was released on 2020 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin liquid films flowing down vertical fibers present a wealth of complex and interesting interfacial dynamics, including the formation of droplets and traveling wave patterns. Such dynamics is an important consideration in various applications, such as fiber coating and direct-contact heat and mass exchangers which take advantage of extended interfacial areas and larger residence time afforded by the bead formation along the fiber. A rigorous investigation on the fluid dynamics and interfacial heat and mass transfer mechanism of liquid films flowing along vertical strings is, thus, needed to enable physics-based optimization and analysis of multi-string designs for the mentioned applications. This dissertation presents a combination of experimental, numerical, and theoretical study of liquid films flowing down a vertical fiber. Additionally, we report a first-ever combined experimental and theoretical study of the instability in thin film flows of a high-surface energy low-viscosity liquid (i.e. water) along cotton threads. Utilizing our finding, we then adapted the multi-string configuration for novel applications, such as humidification, dehumidification, and particle capturing. We started with a thorough experimental study of viscous liquids flowing down vertical fibers (i.e. polymer strings). Previous researchers suggested that the liquid film thickness and velocity profiles of nearly flat portion of a liquid film that precedes the onset of instability can be specified regardless of the nozzle geometry. As a result, they largely overlooked the effects of nozzle on the pattern and characteristics of the downstream flow. We performed a systematic experimental study by varying the nozzle inner diameter from 0.5 to 3.2 mm at various mass flow rates (from 0.02 to 0.08 g/s). We focused on experimental conditions within the Rayleigh Plateau (RP) instability regime, where traveling wave solution emerges and generates uniformly-spaced drop-like liquid beads on vertical fibers. Our results emphasize the strong influence of nozzle geometry on the flow regime and the flow characteristics. We experimentally measured the thickness of the flat film portion after the nozzle, which we term the preinstability thickness, and identified it as a flow parameter which governs the size, spacing, and velocity of downstream liquid beads. We also performed a set of complementary numerical simulations that solves the full Navier-Stokes equations to predict the fluid dynamics of the downstream flow, such as the liquid velocity profile along the fiber. To better understand the influence of nozzle diameter on the regime transition as well as the downstream bead dynamics, we performed a detailed theoretical study of viscous flow down a vertical fiber. We proposed a full lubrication model that includes slip boundary conditions, nonlinear curvature terms, and a film stabilization term, and compared the predicted film dynamics against the experimental results. Numerical simulations confirm that in addition to fiber sizes and flow rates, the downstream flow regime and characteristics are also significantly affected by the nozzle geometry. Moreover, the effect of film stabilization term on the flow pattern and bead characteristic is studied. We also compared our results with previously studied theoretical methods, such as CM model, linear curvature model, and full curvature model. Additionally, we leveraged our successful demonstration of stable water flow along a vertical cotton string to construct a multi-string water vapor capturing system, where a massive array traveling water beads act as the condensation interface for water vapor in the counterflowing air stream. These water beads form through intrinsic flow instability and offer high curvature surfaces to enhance the vapor condensation rate. The effects of the water flow rate and air velocity on the condensation rates are experimentally characterized. The gas-stream pressure drop of the design is also measured. The condensation rates and gas-stream pressure drop from our multi-string dehumidifier is compared with the existing dehumidifier designs. A simplified theoretical model is also presented as the starting point for further optimizing the design parameters of our device. Finally, we extended our investigation for potential applications of the cotton-based multi-string configuration and proposed a novel string-based particle collector. Wet electrostatic precipitators (WESP) are generally highly effective for collecting fine particles in air streams from various sources such as diesel engines, power plants, and oil refineries. However, some limiting factors, such as high water usage, poses restrictions. Our new compact particle collector utilizes an array of traveling water beads on vertical cotton strings to collect the pre-charged particles in the counterflowing air stream. The experimental and numerical investigation presented in this work is performed to determine the collection efficiency and the optimal water flow rate for our new design. The unique configuration of our string-based counterflow WESP in this study exhibits high number-based collection efficiency, > 80%, for a wide range of particle diameters, 10 nm - 2.5 m, while decreasing the water usage significantly, which can provide a basis for the design of more water-efficient WESPs.

Book An Experimental Study of the Stability of Thin Liquid Films Flowing Down a Plane

Download or read book An Experimental Study of the Stability of Thin Liquid Films Flowing Down a Plane written by William Bernard Krantz and published by . This book was released on 1968 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Liquid Films

    Book Details:
  • Author : Ralf Blossey
  • Publisher : Springer Science & Business Media
  • Release : 2012-05-22
  • ISBN : 9400744552
  • Pages : 158 pages

Download or read book Thin Liquid Films written by Ralf Blossey and published by Springer Science & Business Media. This book was released on 2012-05-22 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films (sometimes referred to as “ultrathin”) have proven to be an invaluable experimental model system. What is it that makes thin film instabilities special and interesting? First, thin polymeric films have an important range of applications. An understanding of their instabilities is therefore of practical relevance for the design of such films. The first chapter of the book intends to give a snapshot of current applications, and an outlook on promising future ones. Second, thin liquid films are an interdisciplinary research topic, which leads to a fairly heterogeneous community working on the topic. It justifies attempting to write a text which gives a coherent presentation of the field which researchers across their specialized communities might be interested in. Finally, thin liquid films are an interesting laboratory for a theorist to confront a well-established theory, hydrodynamics, with its limits. Thin films are therefore a field in which a highly fruitful exchange and collaboration exists between experimentalists and theorists. The book stretches from the more concrete to more abstract levels of study: we roughly progress from applications via theory and experiment to rigorous mathematical theory. For an experimental scientist, the book should serve as a reference and guide to what is the current consensus of the theoretical underpinnings of the field of thin film dynamics. Controversial problems on which such a consensus has not yet been reached are clearly indicated in the text, as well as discussed in a final chapter. From a theoretical point of view, the field of dewetting has mainly been treated in a mathematically ‘light’ yet elegant fashion, often making use of scaling arguments. For the untrained researcher, this approach is not always easy to follow. The present book attempts to bridge between the ‘light’ and the ‘rigorous’, always with the ambition to enhance insight and understanding - and to not let go the elegance of the theory.

Book Falling Liquid Films

Download or read book Falling Liquid Films written by S. Kalliadasis and published by Springer. This book was released on 2011-09-25 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.

Book An Experimental Study of Falling Liquid Films in Countercurrent Annular Flow in a Vertical Tube  microform

Download or read book An Experimental Study of Falling Liquid Films in Countercurrent Annular Flow in a Vertical Tube microform written by Gholamreza Karimi and published by National Library of Canada = Bibliothèque nationale du Canada. This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Study of Falling Liquid Films

Download or read book An Experimental Study of Falling Liquid Films written by Larry Oliver Jones and published by . This book was released on 1965 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental Study of a Thin Liquid Film Flowing Down an Inclined Plane

Download or read book Experimental Study of a Thin Liquid Film Flowing Down an Inclined Plane written by Michael Frank Gray Johnson and published by . This book was released on 200? with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Experimental Study on the Dynamics of Thin Liquid Films on Heater Surfaces

Download or read book An Experimental Study on the Dynamics of Thin Liquid Films on Heater Surfaces written by Shengjie Gong and published by . This book was released on 2010 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamics of Thin Liquid Films

Download or read book Dynamics of Thin Liquid Films written by Vilhjalmur Ludviksson and published by . This book was released on 1968 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Temperature and Cryogenic Refrigeration

Download or read book Low Temperature and Cryogenic Refrigeration written by Sadik Kakaç and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Refrigeration plays a prominent role in our everyday lives, and cryogenics plays a major role in medical science, space technology and the cooling of low-temperature electronics. This volume contains chapters on basic refrigeration systems, non-compression refrigeration and cooling, and topics related to global environmental issues, alternative refrigerants, optimum refrigerant selection, cost-quality optimization of refrigerants, advanced thermodynamics of reverse-cycle machines, applications in medicine, cryogenics, heat pipes, gas-solid absorption refrigeration, multisalt resorption heat pumps, cryocoolers, thermoacoustic refrigeration, cryogenic heat transfer and enhancement and other topics covering theory, design, and applications, such as pulse tube refrigeration, which is the most efficient of all cryocoolers and can be used in space missions.

Book Mathematical Optimization Theory and Operations Research

Download or read book Mathematical Optimization Theory and Operations Research written by Igor Bykadorov and published by Springer Nature. This book was released on 2019-10-26 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised and selected papers from the 18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019, held in Ekaterinburg, Russia, in July 2019. The 40 full papers and 4 short papers presented in this volume were carefully reviewed and selected from a total of 170 submissions. The papers in the volume are organised according to the following topical headings: ​combinatorial optimization; game theory and mathematical economics; data mining and computational geometry; integer programming; mathematical programming; operations research; optimal control and applications.

Book Complex Wave Dynamics on Thin Films

Download or read book Complex Wave Dynamics on Thin Films written by Hen-hong Chang and published by Elsevier. This book was released on 2002-03-14 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave evolution on a falling film is a classical hydrodynamic instability whose rich wave dynamics have been carefully recorded in the last fifty years. Such waves are known to profoundly affect the mass and heat transfer of multi-phase industrial units. This book describes the collective effort of both authors and their students in constructing a comprehensive theory to describe the complex wave evolution from nearly harmonic waves at the inlet to complex spatio-temporal patterns involving solitary waves downstream. The mathematical theory represents a significant breakthrough from classical linear stability theories, which can only describe the inlet harmonic waves and also extends classical soliton theory for integrable systems to real solitrary wave dynamics with dissipation. One unique feature of falling-film solitary wave dynamics, which drives much of the spatio-temporal wave evolution, is the irreversible coalescence of such localized wave structures. It represents the first full description of a hydrodynamic instability from inception to developed chaos. This approach should prove useful for other complex hydrodynamic instabilities and would allow industrial engineers to better design their multi-phase apparati by exploiting the deciphered wave dynamics. This publication gives a comprehensive review of all experimental records and existing theories and significantly advances state of the art on the subject and are complimented by complex and attractive graphics from computational fluid mechanics.