EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Cone Beam Computed Tomography

Download or read book Cone Beam Computed Tomography written by Chris C. Shaw and published by Taylor & Francis. This book was released on 2014-02-14 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventional computed tomography (CT) techniques employ a narrow array of x-ray detectors and a fan-shaped x-ray beam to rotate around the patient to produce images of thin sections of the patient. Large sections of the body are covered by moving the patient into the rotating x-ray detector and x-ray source gantry. Cone beam CT is an alternative technique using a large area detector and cone-shaped x-ray beam to produce 3D images of a thick section of the body with one full angle (360 degree or 180 degree plus detector coverage) rotation. It finds applications in situations where bulky, conventional CT systems would interfere with clinical procedures or cannot be integrated with the primary treatments or imaging systems. Cone Beam Computed Tomography explores the past, present, and future state of medical x-ray imaging while explaining how cone beam CT, with its superior spatial resolution and compact configuration, is used in clinical applications and animal research. The book: Supplies a detailed introduction to cone beam CT, covering basic principles and applications as well as advanced techniques Explores state-of-the-art research and future developments while examining the fundamental limitations of the technology Addresses issues related to implementation and system characteristics, including image quality, artifacts, radiation dose, and perception Reviews the historical development of medical x-ray imaging, from conventional CT techniques to volumetric 3D imaging Discusses the major components of cone beam CT: image acquisition, reconstruction, processing, and display A reference work for scientists, engineers, students, and imaging professionals, Cone Beam Computed Tomography provides a solid understanding of the theory and implementation of this revolutionary technology.

Book Computed Tomography

    Book Details:
  • Author : Jiang Hsieh
  • Publisher : SPIE Press
  • Release : 2003
  • ISBN : 9780819444257
  • Pages : 406 pages

Download or read book Computed Tomography written by Jiang Hsieh and published by SPIE Press. This book was released on 2003 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of the evolution of CT, the mathematical and physical aspects of the technology, and the fundamentals of image reconstruction using algorithms. Image display is examined from traditional methods through the most recent advancments. Key performance indices, theories behind the measuremet methodologies, and different measurement phantoms in image quality are discussed. The CT scanner is broken down into components to provide the reader with an understanding of their function, their latest advances, and their impact on the CT system. General descriptions and different categories of artifacts, their causes, and their corrections are considered at length.

Book Image Reconstruction

    Book Details:
  • Author : Gengsheng Lawrence Zeng
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2017-03-20
  • ISBN : 3110500590
  • Pages : 240 pages

Download or read book Image Reconstruction written by Gengsheng Lawrence Zeng and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-20 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing

Book Medical Image Reconstruction

Download or read book Medical Image Reconstruction written by Gengsheng Zeng and published by Springer Science & Business Media. This book was released on 2010-12-28 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.

Book Principles and Advanced Methods in Medical Imaging and Image Analysis

Download or read book Principles and Advanced Methods in Medical Imaging and Image Analysis written by Atam P. Dhawan and published by World Scientific. This book was released on 2008 with total page 869 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computerized medical imaging and image analysis have been the central focus in diagnostic radiology. They provide revolutionarizing tools for visualization of physiology as well as the understanding and quantitative measurement of physiological parameters. This book provides a unique depth of knowledge from the principles to recent advanced methods in medical imaging instrumentation and techniques as well as multidimensional image analysis and classification methods for research, education and applications in computer-aided diagnostic radiology. Internationally renowned researchers and experts in their respective areas provide detailed description of the basic foundation as well as the most recent developments in medical imaging. This book helps readers to understand theoretical and advanced concepts for important research and clinical applications.

Book Maxillofacial Cone Beam Computed Tomography

Download or read book Maxillofacial Cone Beam Computed Tomography written by William C. Scarfe and published by Springer. This book was released on 2018-01-04 with total page 1241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive description of the fundamental operational principles, technical details of acquiring and specific clinical applications of dental and maxillofacial cone beam computed tomography (CBCT). It covers all clinical considerations necessary for optimal performance in a dental setting. In addition overall and region specific correlative imaging anatomy of the maxillofacial region is described in detail with emphasis on relevant disease. Finally imaging interpretation of CBCT images is presented related to specific clinical applications. This book is the definitive resource for all who refer, perform, interpret or use dental and maxillofacial CBCT including dental clinicians and specialists, radiographers, ENT physicians, head and neck, and oral and maxillofacial radiologists.

Book Computed Tomography

    Book Details:
  • Author : Willi A. Kalender
  • Publisher : John Wiley & Sons
  • Release : 2011-07-07
  • ISBN : 3895786446
  • Pages : 372 pages

Download or read book Computed Tomography written by Willi A. Kalender and published by John Wiley & Sons. This book was released on 2011-07-07 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers a comprehensive and user-oriented description of the theoretical and technical system fundamentals of computed tomography (CT) for a wide readership, from conventional single-slice acquisitions to volume acquisition with multi-slice and cone-beam spiral CT. It covers in detail all characteristic parameters relevant for image quality and all performance features significant for clinical application. Readers will thus be informed how to use a CT system to an optimum depending on the different diagnostic requirements. This includes a detailed discussion about the dose required and about dose measurements as well as how to reduce dose in CT. All considerations pay special attention to spiral CT and to new developments towards advanced multi-slice and cone-beam CT. For the third edition most of the contents have been updated and latest topics like dual source CT, dual energy CT, flat detector CT and interventional CT have been added. The enclosed CD-ROM again offers copies of all figures in the book and attractive case studies, including many examples from the most recent 64-slice acquisitions, and interactive exercises for image viewing and manipulation. This book is intended for all those who work daily, regularly or even only occasionally with CT: physicians, radiographers, engineers, technicians and physicists. A glossary describes all the important technical terms in alphabetical order. The enclosed DVD again offers attractive case studies, including many examples from the most recent 64-slice acquisitions, and interactive exercises for image viewing and manipulation. This book is intended for all those who work daily, regularly or even only occasionally with CT: physicians, radiographers, engineers, technicians and physicists. A glossary describes all the important technical terms in alphabetical order.

Book Sampling  Wavelets  and Tomography

Download or read book Sampling Wavelets and Tomography written by John J. Benedetto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sampling, wavelets, and tomography are three active areas of contemporary mathematics sharing common roots that lie at the heart of harmonic and Fourier analysis. The advent of new techniques in mathematical analysis has strengthened their interdependence and led to some new and interesting results in the field. This state-of-the-art book not only presents new results in these research areas, but it also demonstrates the role of sampling in both wavelet theory and tomography. Specific topics covered include: * Robustness of Regular Sampling in Sobolev Algebras * Irregular and Semi-Irregular Weyl-Heisenberg Frames * Adaptive Irregular Sampling in Meshfree Flow Simulation * Sampling Theorems for Non-Bandlimited Signals * Polynomial Matrix Factorization, Multidimensional Filter Banks, and Wavelets * Generalized Frame Multiresolution Analysis of Abstract Hilbert Spaces * Sampling Theory and Parallel-Beam Tomography * Thin-Plate Spline Interpolation in Medical Imaging * Filtered Back-Projection Algorithms for Spiral Cone Computed Tomography Aimed at mathematicians, scientists, and engineers working in signal and image processing and medical imaging, the work is designed to be accessible to an audience with diverse mathematical backgrounds. Although the volume reflects the contributions of renowned mathematicians and engineers, each chapter has an expository introduction written for the non-specialist. One of the key features of the book is an introductory chapter stressing the interdependence of the three main areas covered. A comprehensive index completes the work. Contributors: J.J. Benedetto, N.K. Bose, P.G. Casazza, Y.C. Eldar, H.G. Feichtinger, A. Faridani, A. Iske, S. Jaffard, A. Katsevich, S. Lertrattanapanich, G. Lauritsch, B. Mair, M. Papadakis, P.P. Vaidyanathan, T. Werther, D.C. Wilson, A.I. Zayed

Book Medical Imaging Systems Technology Volume 2  Modalities

Download or read book Medical Imaging Systems Technology Volume 2 Modalities written by Cornelius T Leondes and published by World Scientific. This book was released on 2005-11-30 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.

Book Tomography

Download or read book Tomography written by Pierre Grangeat and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principle of tomography is to explore the structure and composition of objects non-destructively along spatial and temporal dimensions, using penetrating radiation, such as X- and gamma-rays, or waves, such as electromagnetic and acoustic waves. Based on computer-assisted image reconstruction, tomography provides maps of parameters that characterize the emission of the employed radiation or waves, or their interaction with the examined objects, for one or several cross-sections. Thus, it gives access to the inner structure of inert objects and living organisms in their full complexity. In this book, multidisciplinary specialists explain the foundations and principles of tomographic imaging and describe a broad range of applications. The content is organized in five parts, which are dedicated to image reconstruction, microtomography, industrial tomography, morphological medical tomography and functional medical tomography.

Book Mathematical Methods in Tomography

Download or read book Mathematical Methods in Tomography written by Gabor T. Herman and published by Springer. This book was released on 1992-01-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- tegral geometry for a family of rays with multiple reflec- tions -V.P.Palamodov: Inversion formulas for the three-di- mensional ray transform - Medical Imaging Techniques: V.Friedrich: Backscattered Photons - are they useful for a surface - near tomography - P.Grangeat: Mathematical frame- work of cone beam 3D reconstruction via the first derivative of the Radon transform -P.Grassin,B.Duchene,W.Tabbara: Dif- fraction tomography: some applications and extension to 3D ultrasound imaging -F.A.Gr}nbaum: Diffuse tomography: a re- fined model -R.Kress,A.Zinn: Three dimensional reconstruc- tions in inverse obstacle scattering -A.K.Louis: Mathemati- cal questions of a biomagnetic imaging problem - Inverse Problems and Optimization: Y.Censor: On variable block algebraic reconstruction techniques -P.P.Eggermont: On Volterra-Lotka differential equations and multiplicative algorithms for monotone complementary problems

Book Computed Tomography   E Book

    Book Details:
  • Author : Euclid Seeram
  • Publisher : Elsevier Health Sciences
  • Release : 2022-06-16
  • ISBN : 0443107009
  • Pages : 538 pages

Download or read book Computed Tomography E Book written by Euclid Seeram and published by Elsevier Health Sciences. This book was released on 2022-06-16 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build the foundation necessary for the practice of CT scanning with Computed Tomography: Physical Principles, Patient Care, Clinical Applications, and Quality Control, 5th Edition. Written to meet the varied requirements of radiography students and practitioners, this two-color text provides comprehensive coverage of the physical principles of computed tomography and its clinical applications. The clear, straightforward approach is designed to improve your understanding of sectional anatomic images as they relate to computed tomography and facilitate communication between CT technologists and other medical personnel. - Chapter outlines and chapter review questions help you focus your study time and master content. - NEW! Three additional chapters reflect the latest industry CT standards in imaging: Radiation Awareness and Safety Campaigns in Computed Tomography, Patient Care Considerations, and Artificial Intelligence: An Overview of Applications in Health and Medical Imaging. - UPDATED! More than 509 photos and line drawings visually clarify key concepts. - UPDATED! The latest information keeps you up to date on advances in volume CT scanning; CT fluoroscopy; and multislice applications like 3-D imaging, CT angiography, and virtual reality imaging (endoscopy).

Book Medical Imaging Systems Technology  Modalities

Download or read book Medical Imaging Systems Technology Modalities written by Cornelius T. Leondes and published by World Scientific. This book was released on 2005 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly set of well-harmonized volumes provides indispensable and complete coverage of the exciting and evolving subject of medical imaging systems. Leading experts on the international scene tackle the latest cutting-edge techniques and technologies in an in-depth but eminently clear and readable approach.Complementing and intersecting one another, each volume offers a comprehensive treatment of substantive importance to the subject areas. The chapters, in turn, address topics in a self-contained manner with authoritative introductions, useful summaries, and detailed reference lists. Extensively well-illustrated with figures throughout, the five volumes as a whole achieve a unique depth and breath of coverage.As a cohesive whole or independent of one another, the volumes may be acquired as a set or individually.

Book Medical Image Reconstruction

    Book Details:
  • Author : Gengsheng Lawrence Zeng
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2023-07-04
  • ISBN : 3111055701
  • Pages : 392 pages

Download or read book Medical Image Reconstruction written by Gengsheng Lawrence Zeng and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-07-04 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the essential concepts of tomography in the field of medical imaging. The medical imaging modalities include x-ray CT (computed tomography), PET (positron emission tomography), SPECT (single photon emission tomography) and MRI. In these modalities, the measurements are not in the image domain and the conversion from the measurements to the images is referred to as the image reconstruction. The work covers various image reconstruction methods, ranging from the classic analytical inversion methods to the optimization-based iterative image reconstruction methods. As machine learning methods have lately exhibited astonishing potentials in various areas including medical imaging the author devotes one chapter to applications of machine learning in image reconstruction. Based on college level in mathematics, physics, and engineering the textbook supports students in understanding the concepts. It is an essential reference for graduate students and engineers with electrical engineering and biomedical background due to its didactical structure and the balanced combination of methodologies and applications,

Book X Ray Computed Tomography in Biomedical Engineering

Download or read book X Ray Computed Tomography in Biomedical Engineering written by Robert Cierniak and published by Springer Science & Business Media. This book was released on 2011-01-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computed Tomography gives a detailed overview of various aspects of computed tomography. It discusses X-ray CT tomography from a historical point of view, the design and physical operating principles of computed tomography apparatus, the algorithms of image reconstruction and the quality assessment criteria of tomography scanners. Algorithms of image reconstruction from projections, a crucial problem in medical imaging, are considered in depth. The author gives descriptions of the reconstruction methods related to tomography scanners with a parallel X-ray beam, trough solutions with fan-shaped beam and successive modifications of spiral scanners. Computed Tomography contains a dedicated chapter for those readers who are interested in computer simulations based on studies of reconstruction algorithms. The information included in this chapter will enable readers to create a simulation environment in which virtual tomography projections can be obtained in all basic projection systems. This monograph is a valuable study on computed tomography that will be of interest to advanced students and researchers in the fields of biomedical engineering, medical electronics, computer science and medicine.

Book Fundamentals of Medical Imaging

Download or read book Fundamentals of Medical Imaging written by Paul Suetens and published by Cambridge University Press. This book was released on 2017-05-11 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition provides a concise and generously illustrated survey of the complete field of medical imaging and image computing, explaining the mathematical and physical principles and giving the reader a clear understanding of how images are obtained and interpreted. Medical imaging and image computing are rapidly evolving fields, and this edition has been updated with the latest developments in the field, as well as new images and animations. An introductory chapter on digital image processing is followed by chapters on the imaging modalities: radiography, CT, MRI, nuclear medicine and ultrasound. Each chapter covers the basic physics and interaction with tissue, the image reconstruction process, image quality aspects, modern equipment, clinical applications, and biological effects and safety issues. Subsequent chapters review image computing and visualization for diagnosis and treatment. Engineers, physicists and clinicians at all levels will find this new edition an invaluable aid in understanding the principles of imaging and their clinical applications.

Book Advances in Healthcare Technology

Download or read book Advances in Healthcare Technology written by Gerhard Spekowius and published by Springer Science & Business Media. This book was released on 2006-07-06 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving healthcare and staying healthy is one of the most discussed and important issues in our society. Technology has played and will play an important role in many aspects of the healthcare system, and it offers new and better ways to solve the key health problems of the new century. This book describes valued contributions of technology for improving hospital and home healthcare, and gives a perspective on how they will influence critical aspects of future medical care. It provides an overview and discussion of trends, presents the state-of-the-art of important research areas, and highlights recent breakthrough results in selected fields, giving an outlook on game-changing developments in the coming decades. The material is arranged in 6 parts and a total of 31 chapters. The healthcare areas addressed are: General advances and trends in healthcare technology, diagnostic imaging, integration of imaging and therapy, molecular medicine, medical information technology and personal healthcare.