EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real World Drive Cycles

Download or read book Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real World Drive Cycles written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

Book Driving and Engine Cycles

Download or read book Driving and Engine Cycles written by Evangelos G. Giakoumis and published by Springer. This book was released on 2016-12-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

Book Solid Waste Engineering and Management

Download or read book Solid Waste Engineering and Management written by Lawrence K. Wang and published by Springer Nature. This book was released on 2022-01-01 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first volume in a three-volume set on Solid Waste Engineering and Management. It provides an introduction to the topic, and focuses on legislation, transportation, transfer station, characterization, mechanical volume reduction, measurement, combustion, incineration, composting, landfilling, and systems planning as it pertains to solid waste management. The three volumes comprehensively discuss various contemporary issues associated with solid waste pollution management, impacts on the environment and vulnerable human populations, and solutions to these problems.

Book Reducing Fuel Consumption and Greenhouse Gas Emissions of Medium  and Heavy Duty Vehicles  Phase Two

Download or read book Reducing Fuel Consumption and Greenhouse Gas Emissions of Medium and Heavy Duty Vehicles Phase Two written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-05-15 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medium- and heavy-duty trucks, motor coaches, and transit buses - collectively, "medium- and heavy-duty vehicles", or MHDVs - are used in every sector of the economy. The fuel consumption and greenhouse gas emissions of MHDVs have become a focus of legislative and regulatory action in the past few years. This study is a follow-on to the National Research Council's 2010 report, Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles. That report provided a series of findings and recommendations on the development of regulations for reducing fuel consumption of MHDVs. On September 15, 2011, NHTSA and EPA finalized joint Phase I rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and fuel consumption for on-road medium- and heavy-duty vehicles. As NHTSA and EPA began working on a second round of standards, the National Academies issued another report, Reducing the Fuel Consumption and Greenhouse Gas Emissions of Medium- and Heavy-Duty Vehicles, Phase Two: First Report, providing recommendations for the Phase II standards. This third and final report focuses on a possible third phase of regulations to be promulgated by these agencies in the next decade.

Book Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real world Drive Cycles

Download or read book Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real world Drive Cycles written by Eric Wood and published by . This book was released on 2014 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation to inform the intelligent design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models. Aggregate results of this study suggest that road grade could be responsible for 1% to 3% of fuel use in light-duty automobiles.

Book Suitability of Synthetic Driving Profiles from Traffic Micro Simulation for Real World Energy Analysis  Preprint

Download or read book Suitability of Synthetic Driving Profiles from Traffic Micro Simulation for Real World Energy Analysis Preprint written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers in this study did not result in a significant discrepancy between fuel economy simulations based on synthetic and empirical data; a finding with implications on the potential energy efficiency gains of automated vehicle technology.

Book Technologies and Approaches to Reducing the Fuel Consumption of Medium  and Heavy Duty Vehicles

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium and Heavy Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-07-30 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Book The Effects of Driving Style and Vehicle Performance on the Real world Fuel Consumption of U S  Light duty Vehicles

Download or read book The Effects of Driving Style and Vehicle Performance on the Real world Fuel Consumption of U S Light duty Vehicles written by Irene Michelle Berry and published by . This book was released on 2010 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. light-duty vehicle fleet. One way to do this is through changes in driving style, specifically through reductions in driving aggressiveness. The role of vehicle performance is particularly interesting because of the recognized tradeoff between vehicle performance and certified fuel consumption and because more powerful vehicles are capable of more aggressive driving. This thesis analyzes the effects of driving style and vehicle performance on the real-world fuel consumption of conventional vehicles though two parts. First, vehicle simulations assess the sensitivity of fuel consumption to a wide range of driving patterns. From these results, three aggressiveness factors were developed for quantifying driving aggressiveness. Each aggressiveness factor, although based only on the speed trace and vehicle characteristics, is proportional to fuel consumption in one of three specific speed ranges: neighborhood, city, or highway speeds. These aggressiveness factors provide a tool for comparing drive cycles and evaluating the real-world driving patterns. Second, driving data from two U.S. sources was used to 1) provide illustrative examples of real world driving and 2) assess the relationship between driving aggressiveness and vehicle performance. The distribution of aggressiveness among the driving data follows a lognormal shape. The average aggressiveness is either below or near the aggressiveness of the U.S. drive cycles developed in the 1990s. Moderate performance vehicles, the most common type of vehicle, are driven most aggressively. Low performance vehicles are driven least aggressively. The results suggest that, for the illustrative data analyzed in this work, reducing velocities during highway driving would save roughly the same amount of fuel as reducing accelerations during all driving. However, on an individual basis, the fuel savings achieved from these behaviors would vary significantly. Aggressive drivers should focus on reducing accelerations, while less aggressive drivers should focus on driving at lower speeds on the highway. And the greatest fuel savings can be attained if the most aggressive drivers, those who drive moderate performance vehicles, drove with lower accelerations.

Book Technologies and Approaches to Reducing the Fuel Consumption of Medium  and Heavy Duty Vehicles

Download or read book Technologies and Approaches to Reducing the Fuel Consumption of Medium and Heavy Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2010-08-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.

Book Modeling Heavy Medium Duty Fuel Consumption Based on Drive Cycle Properties

Download or read book Modeling Heavy Medium Duty Fuel Consumption Based on Drive Cycle Properties written by and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

Book Cost  Effectiveness  and Deployment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Cost Effectiveness and Deployment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Book Passenger Car Fuel Economy  EPA and Road

Download or read book Passenger Car Fuel Economy EPA and Road written by Dillard Murrell and published by . This book was released on 1980 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book On Road Validation of a Simplified Model for Estimating Real World Fuel Economy

Download or read book On Road Validation of a Simplified Model for Estimating Real World Fuel Economy written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle's fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of 'off-cycle credits' that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.

Book Modern Electric  Hybrid Electric  and Fuel Cell Vehicles

Download or read book Modern Electric Hybrid Electric and Fuel Cell Vehicles written by Mehrdad Ehsani and published by CRC Press. This book was released on 2018-02-02 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software.

Book The Impact of Automotive Fuel Economy Standards on Competition in the Automotive Industry  Final Report

Download or read book The Impact of Automotive Fuel Economy Standards on Competition in the Automotive Industry Final Report written by J. Hayden Boyd and published by . This book was released on 1980 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hedonic demand model to analyze consumers' preferences for automobile attributes and the effect of changes in vehicles on market share.

Book Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real World Drive Cycles

Download or read book Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real World Drive Cycles written by and published by . This book was released on 2014 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation to inform the intelligent design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models. Aggregate results of this study suggest that road grade could be responsible for 1% to 3% of fuel use in light-duty automobiles.