EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers

Download or read book Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO2) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO2 is a novel concept that few people have much experience with or intuition about. But the parameters that control CO2 plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO2 will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO2 density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO2 (P = 73.8 bars, T = 31 C). Then CO2 will exist primarily as a free-phase supercritical fluid, while some CO2 will dissolve into the aqueous phase.

Book Understanding the Plume Dynamics and Risk Associated with CO2 Injection in Deep Saline Aquifers

Download or read book Understanding the Plume Dynamics and Risk Associated with CO2 Injection in Deep Saline Aquifers written by Abhishek Kumar Gupta and published by . This book was released on 2011 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological sequestration of CO2 in deep saline reservoirs is one of the ways to reduce its continuous emission into the atmosphere to mitigate the greenhouse effect. The effectiveness of any CO2 sequestration operation depends on pore volume and the sequestration efficiency of the reservoir. Sequestration efficiency is defined here as the maximum storage with minimum risk of leakage to the overlying formations or to the surface. This can be characterized using three risk parameters i) the time the plume takes to reach the top seal; ii) maximum lateral extent of the plume and iii) the percentage of mobile CO2 present at any time. The selection among prospective saline reservoirs can be expedited by developing some semi-analytical correlations for these risk parameters which can be used in place of reservoir simulation study for each and every saline reservoir. Such correlations can reduce the cost and time for commissioning a geological site for CO2 sequestration. To develop such correlations, a database has been created from a large number of compositional reservoir simulations for different elementary reservoir parameters including porosity, permeability, permeability anisotropy, reservoir depth, thickness, dip, perforation interval and constant pressure far boundary condition. This database is used to formulate different correlations that relate the sequestration efficiency to reservoir properties and operating conditions. The various elementary reservoir parameters are grouped together to generate different variants of gravity number used in the correlations. We update a previously reported correlation for time to hit the top seal and develop new correlations for other two parameters using the newly created database. A correlation for percentage of trapped CO2 is also developed using a previously created similar database. We find that normalizing all risk parameters with their respective characteristic values yields reasonable correlations with different variants of gravity number. All correlations confirm the physics behind plume movement in a reservoir. The correlations reproduce almost all simulation results within a factor of two, and this is adequate for rapid ranking or screening of prospective storage reservoirs. CO2 injection in saline reservoirs on the scale of tens of millions of tonnes may result in fracturing, fault activation and leakage of brine along conductive pathways. Critical contour of overpressure (CoP) is a convenient proxy to determine the risk associated with pressure buildup at different location and time in the reservoir. The location of this contour varies depending on the target aquifer properties (porosity, permeability etc.) and the geology (presence and conductivity of faults). The CoP location also depends on relative permeability, and we extend the three-region injection model to derive analytical expressions for a specific CoP as a function of time. We consider two boundary conditions at the aquifer drainage radius, constant pressure or an infinite aquifer. The model provides a quick tool for estimating pressure profiles. Such tools are valuable for screening and ranking sequestration targets. Relative permeability curves measured on samples from seven potential storage formations are used to illustrate the effect on the CoPs. In the case of a constant pressure boundary and constant rate injection scenario, the CoP for small overpressures is time-invariant and independent of relative permeability. Depending on the relative values of overall mobilities of two-phase region and of brine region, the risk due to a critical CoP which lies in the two-phase region can either increase or decrease with time. In contrast, the risk due to a CoP in the drying region always decreases with time. The assumption of constant pressure boundaries is optimistic in the sense that CoPs extend the least distance from the injection well. We extend the analytical model to infinite-acting aquifers to get a more widely applicable estimate of risk. An analytical expression for pressure profile is developed by adapting water influx models from traditional reservoir engineering to the "three-region" saturation distribution. For infinite-acting boundary condition, the CoP trends depend on same factors as in the constant pressure case, and also depend upon the rate of change of aquifer boundary pressure with time. Commercial reservoir simulators are used to verify the analytical model for the constant pressure boundary condition. The CoP trends from the analytical solution and simulation results show a good match. To achieve safe and secure CO2 storage in underground reservoirs several state and national government agencies are working to develop regulatory frameworks to estimate various risks associated with CO2 injection in saline aquifers. Certification Framework (CF), developed by Oldenburg et al (2007) is a similar kind of regulatory approach to certify the safety and effectiveness of geologic carbon sequestration sites. CF is a simple risk assessment approach for evaluating CO2 and brine leakage risk associated only with subsurface processes and excludes compression, transportation, and injection-well leakage risk. Certification framework is applied to several reservoirs in different geologic settings. These include In Salah CO2 storage project Krechba, Algeria, Aquistore CO2 storage project Saskatchewan, Canada and WESTCARB CO2 storage project, Solano County, California. Compositional reservoir simulations in CMG-GEM are performed for CO2 injection in each storage reservoir to predict pressure build up risk and CO2 leakage risk. CO2 leakage risk is also estimated using the catalog of pre-computed reservoir simulation results. Post combustion CO2 capture is required to restrict the continuous increase of carbon content in the atmosphere. Coal fired electricity generating stations are the dominant players contributing to the continuous emissions of CO2 into the atmosphere. U.S. government has planned to install post combustion CO2 capture facility in many coal fired power plants including W.A. Parish electricity generating station in south Texas. Installing a CO2 capture facility in a coal fired power plant increases the capital cost of installation and operating cost to regenerate the turbine solvent (steam or natural gas) to maintain the stripper power requirement. If a coal-fired power plant with CO2 capture is situated over a viable source for geothermal heat, it may be desirable to use this heat source in the stripper. Geothermal brine can be used to replace steam or natural gas which in turn reduces the operating cost of the CO2 capture facility. High temperature brine can be produced from the underground geothermal brine reservoir and can be injected back to the reservoir after the heat from the hot brine is extracted. This will maintain the reservoir pressure and provide a long-term supply of hot brine to the stripper. Simulations were performed to supply CO2 capture facility equivalent to 60 MWe electric unit to capture 90% of the incoming CO2 in WA Parish electricity generating station. A reservoir simulation study in CMG-GEM is performed to evaluate the feasibility to recycle the required geothermal brine for 30 years time. This pilot study is scaled up to 15 times of the original capacity to generate 900 MWe stripping system to capture CO2 at surface.

Book Storage Capacity and Injection Rate Estimates for CO2 Sequestration in Deep Saline Aquifers in the Conterminous United States

Download or read book Storage Capacity and Injection Rate Estimates for CO2 Sequestration in Deep Saline Aquifers in the Conterminous United States written by Michael Lawrence Szulczewski and published by . This book was released on 2009 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A promising method to mitigate global warming is injecting CO2 into deep saline aquifers. In order to ensure the safety of this method, it is necessary to understand how much CO2 can be injected into an aquifer and at what rate. Since offsetting nationwide emissions requires storing very large quantities of CO2, these properties must be understood at the large scale of geologic basins. In this work, we develop simple models of storage capacity and injection rate at the basin scale. We develop a storage capacity model that calculates how much CO2 an aquifer can store based on how the plume of injected CO2 migrates. We also develop an injection rate model that calculates the maximum rate at which CO2 can be injected into an aquifer based on the pressure rise in the aquifer. We use these models to estimate storage capacities and maximum injection rates for a variety of reservoirs throughout the United States, and compare the results to predicted emissions from coal-burning power plants over the next twenty-five years and fifty years. Our results suggest that the United States has enough storage capacity to sequester all of the CO2 emitted from coal-burning plants over the next 25 years. Furthermore, our results indicate that CO2 can be sequestered at the same rate it is emitted for this time period without fracturing the aquifers. For emissions over the next 50 years, however, the results are less clear: while the United States will likely have enough capacity, maintaining sufficiently high injection rates could be problematic.

Book Analytical Modeling of CO2 Migration in Saline Aquifers for Geological CO2 Storage

Download or read book Analytical Modeling of CO2 Migration in Saline Aquifers for Geological CO2 Storage written by Christopher William MacMinn and published by . This book was released on 2008 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of carbon dioxide into geological formations for long-term storage is widely regarded as a promising tool for reducing global atmospheric CO2 emissions. Given the environmental and health risks associated with leakage of CO2 from such a storage site, it is critical to ensure that injected CO2 remain trapped underground for the foreseeable future. Careful site selection and effective injection methods are the two primary means of addressing this concern, and an accurate understanding of the subsurface spreading and migration of the CO2 plume during and after injection is essential for both purposes. It is well known that some CO2 will be trapped in the pore space of the aquifer rock as the plume migrates and spreads; this phenomenon, known as capillary trapping, is an ideal mechanism for geological CO2 storage because the trapped gas is immobile and distributed over a large area, greatly decreasing the risk of leakage and enhancing the effectiveness of slower, chemical trapping mechanisms. Here, we present an analytical model for the post-injection spreading of a plume of CO2 in a saline aquifer, both with and without capillary trapping. We solve the governing equation both analytically and numerically, and a comparison of the results for two different initial plume shapes demonstrates the importance of accounting for the true initial plume shape when capillary-trapping effects are considered. We nd that the plume volume converges to a self-similar, power-law trend at late times for any initial shape, but that the plume volume at the onset of this late-time behavior depends strongly on the initial shape even for weakly trapping systems.

Book Geological Carbon Storage

    Book Details:
  • Author : Stéphanie Vialle
  • Publisher : John Wiley & Sons
  • Release : 2018-11-15
  • ISBN : 1119118670
  • Pages : 372 pages

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Geological Storage of CO2 in Deep Saline Formations

Download or read book Geological Storage of CO2 in Deep Saline Formations written by Auli Niemi and published by Springer. This book was released on 2017-02-24 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.

Book Geological Storage of Carbon Dioxide  CO2

Download or read book Geological Storage of Carbon Dioxide CO2 written by J Gluyas and published by Elsevier. This book was released on 2013-11-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS

Book Uncertainty Analysis of Capacity Estimates and Leakage Potential for Geologic Storage of Carbon Dioxide in Saline Aquifers

Download or read book Uncertainty Analysis of Capacity Estimates and Leakage Potential for Geologic Storage of Carbon Dioxide in Saline Aquifers written by Yamama Raza and published by . This book was released on 2009 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) Any development of regulation of geologic storage and relevant policies should take uncertainty into consideration. Better understanding of the uncertainty in the science of geologic storage can influence the areas of further research, and improve the accuracy of models that are being used. Incorporating uncertainty analysis into regulatory requirements for site characterization will provide better oversight and management of injection activities. With the proper management and monitoring of sites, the establishment of proper liability regimes, accounting rules and compensation mechanisms for leakage, geologic storage can be a safe and effective carbon mitigation tool to combat climate change.

Book Developing a Strategy for Parameter Estimation from CO2 Plume Migration During Geologic Carbon Sequestration in a Fluvial Depositional Setting

Download or read book Developing a Strategy for Parameter Estimation from CO2 Plume Migration During Geologic Carbon Sequestration in a Fluvial Depositional Setting written by Antoine Jean Espinet and published by . This book was released on 2011 with total page 51 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of the CO2 plume from monitoring data is needed in order to assure safe carbon sequestration in geological formations. Synthetic field measurements and numerical simulations are used to estimate the plume position and obtain a better understanding of the characteristics of geological formations that govern the CO2 flow. The challenge is to be able to give an accurate prognosis of the plume location with relatively few monitoring observations while dealing with uncertainties and model error. We use the TOUGH2 program, which is a numerical simulator for multi-phase fluid and heat flow in porous and fractured media, along with the ECO2N module, specific for CO2 flow in brine. This model describes the coupling of flow and transport processes in heterogeneous geologic systems. The optimization program 'Stochastic RBF' is used to calibrate the model parameters. Stochastic RBF has proven to be computationally efficient for environmental models that are computationally expensive. It is a derivative-free method, which makes it easier to use in conjunction with a complex nonlinear simulation model. We use three-dimensional saline aquifers with different geological characteristics for the application. We show that estimating shale permeability is critical to determine the plume shape and position, while other facies higher permeabilities can be estimated with less accuracy with little effect on the estimate of the location of the CO2 plume. We also investigate how parameter lumping affects the calibration and the amount of measurements needed in order to accurately estimate plume position. In many cases, it has been found that pressure measurements suffice, while other types of measurements are needed in cases with more parameters to estimate. The plume position can be determined with a correlation coefficient equal to 87 percent with our method with a minimal amount of measurements and number of simulations. Using only pressure observations and no gas saturation samples, a slightly smaller correlation coefficient was obtained.

Book The Rock Physics Handbook

    Book Details:
  • Author : Gary Mavko
  • Publisher : Cambridge University Press
  • Release : 2009-04-30
  • ISBN : 0521861365
  • Pages : 525 pages

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2009-04-30 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: A significantly expanded new edition of this practical guide to rock physics and geophysical interpretation for reservoir geophysicists and engineers.

Book Geologic CO2 Storage

    Book Details:
  • Author : YagnaDeepika Oruganti
  • Publisher :
  • Release : 2010
  • ISBN :
  • Pages : 612 pages

Download or read book Geologic CO2 Storage written by YagnaDeepika Oruganti and published by . This book was released on 2010 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: When CO2 is injected in deep saline aquifers on the scale of gigatonnes, pressure buildup in the aquifer during injection will be a critical issue. Because fracturing, fault activation and leakage of brine along pathways such as abandoned wells all require a threshold pressure (Nicot et al., 2009); operators and regulators will be concerned with the spatial extent of the pressure buildup. Thus a critical contour of overpressure is a convenient proxy for risk. The location of this contour varies depending on the target aquifer properties (porosity, permeability etc.), the geology (presence of faults, abandoned wells etc.), and boundary conditions. Importantly, the extent also depends on relative permeability (Burton et al., 2008). First we describe ways of quantifying the risk due to pressure buildup in an aquifer with a constant pressure boundary, using the three-region injection model to derive analytical expressions for a specific contour of overpressure at any given time. All else being the same, the two-phase-region mobilities (and hence relative permeability characteristics) provide a basis for the ranking of storage formations based on risk associated with pressure elevation during injection. The pressure buildup during CO2 injection will depend strongly upon the boundary conditions at the boundary of the storage formation. An analytical model for pressure profile in the infinite-acting aquifer is developed by combining existing water influx models in traditional reservoir engineering (Van-Everdingen and Hurst model, Carter-Tracy model) to the current problem for describing brine efflux from the storage aquifer when CO2 injection creates a "three-region" saturation distribution. We determine evolution of overpressure with time for constant pressure, no-flow and infinite-acting boundary conditions, and conclude that constant pressure and no-flow boundary conditions give the most optimistic and pessimistic estimates of risk respectively. Compositional reservoir simulation results, using CMG-GEM simulator are presented, to show the effect of an isolated no-flow boundary on pressure buildup and injectivity in saline aquifers. We investigate the effect of multiple injection wells on single-phase fluid flow on aquifer pressure buildup, and demonstrate the use of an equivalent injection well concept to approximate the aquifer pressure profile. We show a relatively inexpensive method of predicting the presence of unanticipated heterogeneities in the formation, by employing routine measurements such as injection rate and injection pressure to track deviation in the plume path. This idea is implemented by combining Pro-HMS (probabilistic history matching software, that carries out geologically consistent parameter estimation), and a CMG-GEM model which has been tuned to the physics of the CO2-brine system.

Book Predicting the Migration of CO2 Plume in Saline Aquifers Using Probabilistic History Matching Approaches

Download or read book Predicting the Migration of CO2 Plume in Saline Aquifers Using Probabilistic History Matching Approaches written by Sayantan Bhowmik and published by . This book was released on 2012 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the operation of a geological carbon storage project, verifying that the CO2 plume remains within the permitted zone is of particular interest both to regulators and to operators. However, the cost of many monitoring technologies, such as time-lapse seismic, limits their application. For adequate predictions of plume migration, proper representation of heterogeneous permeability fields is imperative. Previous work has shown that injection data (pressures, rates) from wells might provide a means of characterizing complex permeability fields in saline aquifers. Thus, given that injection data are readily available and inexpensive, they might provide an inexpensive alternative for monitoring; combined with a flow model like the one developed in this work, these data could even be used for predicting plume migration. These predictions of plume migration pathways can then be compared to field observations like time-lapse seismic or satellite measurements of surface-deformation, to ensure the containment of the injected CO2 within the storage area. In this work, two novel methods for creating heterogeneous permeability fields constrained by injection data are demonstrated. The first method is an implementation of a probabilistic history matching algorithm to create models of the aquifer for predicting the movement of the CO2 plume. The geologic property of interest, for example hydraulic conductivity, is updated conditioned to geological information and injection pressures. The resultant aquifer model which is geologically consistent can be used to reliably predict the movement of the CO2 plume in the subsurface. The second method is a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO2 plume. The applicability of both methods is demonstrated using a field data set from central Algeria.

Book Multiphase Flow in Permeable Media

Download or read book Multiphase Flow in Permeable Media written by Martin J. Blunt and published by Cambridge University Press. This book was released on 2017-02-16 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a fundamental description of multiphase fluid flow through porous rock, based on understanding movement at the pore, or microscopic, scale.

Book How to Store CO2 Underground  Insights from early mover CCS Projects

Download or read book How to Store CO2 Underground Insights from early mover CCS Projects written by Philip Ringrose and published by Springer Nature. This book was released on 2020-01-01 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.

Book Geophysics and Geosequestration

Download or read book Geophysics and Geosequestration written by Thomas L. Davis and published by Cambridge University Press. This book was released on 2019-05-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.