EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Causal Inference in Statistics

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Book An Introduction to Causal Inference

Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Book Causality in a Social World

Download or read book Causality in a Social World written by Guanglei Hong and published by John Wiley & Sons. This book was released on 2015-06-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality in a Social World introduces innovative new statistical research and strategies for investigating moderated intervention effects, mediated intervention effects, and spill-over effects using experimental or quasi-experimental data. The book uses potential outcomes to define causal effects, explains and evaluates identification assumptions using application examples, and compares innovative statistical strategies with conventional analysis methods. Whilst highlighting the crucial role of good research design and the evaluation of assumptions required for identifying causal effects in the context of each application, the author demonstrates that improved statistical procedures will greatly enhance the empirical study of causal relationship theory. Applications focus on interventions designed to improve outcomes for participants who are embedded in social settings, including families, classrooms, schools, neighbourhoods, and workplaces.

Book Causal Inference in Statistics  Social  and Biomedical Sciences

Download or read book Causal Inference in Statistics Social and Biomedical Sciences written by Guido W. Imbens and published by Cambridge University Press. This book was released on 2015-04-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Book Experimental and Quasi experimental Designs for Generalized Causal Inference

Download or read book Experimental and Quasi experimental Designs for Generalized Causal Inference written by William R. Shadish and published by Cengage Learning. This book was released on 2002 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sections include: experiments and generalised causal inference; statistical conclusion validity and internal validity; construct validity and external validity; quasi-experimental designs that either lack a control group or lack pretest observations on the outcome; quasi-experimental designs that use both control groups and pretests; quasi-experiments: interrupted time-series designs; regresssion discontinuity designs; randomised experiments: rationale, designs, and conditions conducive to doing them; practical problems 1: ethics, participation recruitment and random assignment; practical problems 2: treatment implementation and attrition; generalised causal inference: a grounded theory; generalised causal inference: methods for single studies; generalised causal inference: methods for multiple studies; a critical assessment of our assumptions.

Book Matched Sampling for Causal Effects

Download or read book Matched Sampling for Causal Effects written by Donald B. Rubin and published by Cambridge University Press. This book was released on 2006-09-04 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.

Book The Book of Why

    Book Details:
  • Author : Judea Pearl
  • Publisher : Basic Books
  • Release : 2018-05-15
  • ISBN : 0465097618
  • Pages : 432 pages

Download or read book The Book of Why written by Judea Pearl and published by Basic Books. This book was released on 2018-05-15 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Book Causal Learning

    Book Details:
  • Author : Alison Gopnik
  • Publisher : Oxford University Press
  • Release : 2007-03-22
  • ISBN : 0190208260
  • Pages : 384 pages

Download or read book Causal Learning written by Alison Gopnik and published by Oxford University Press. This book was released on 2007-03-22 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding causal structure is a central task of human cognition. Causal learning underpins the development of our concepts and categories, our intuitive theories, and our capacities for planning, imagination and inference. During the last few years, there has been an interdisciplinary revolution in our understanding of learning and reasoning: Researchers in philosophy, psychology, and computation have discovered new mechanisms for learning the causal structure of the world. This new work provides a rigorous, formal basis for theory theories of concepts and cognitive development, and moreover, the causal learning mechanisms it has uncovered go dramatically beyond the traditional mechanisms of both nativist theories, such as modularity theories, and empiricist ones, such as association or connectionism.

Book Observation and Experiment

Download or read book Observation and Experiment written by Paul Rosenbaum and published by Harvard University Press. This book was released on 2017-08-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A daily glass of wine prolongs life—yet alcohol can cause life-threatening cancer. Some say raising the minimum wage will decrease inequality while others say it increases unemployment. Scientists once confidently claimed that hormone replacement therapy reduced the risk of heart disease but now they equally confidently claim it raises that risk. What should we make of this endless barrage of conflicting claims? Observation and Experiment is an introduction to causal inference by one of the field’s leading scholars. An award-winning professor at Wharton, Paul Rosenbaum explains key concepts and methods through lively examples that make abstract principles accessible. He draws his examples from clinical medicine, economics, public health, epidemiology, clinical psychology, and psychiatry to explain how randomized control trials are conceived and designed, how they differ from observational studies, and what techniques are available to mitigate their bias. “Carefully and precisely written...reflecting superb statistical understanding, all communicated with the skill of a master teacher.” —Stephen M. Stigler, author of The Seven Pillars of Statistical Wisdom “An excellent introduction...Well-written and thoughtful...from one of causal inference’s noted experts.” —Journal of the American Statistical Association “Rosenbaum is a gifted expositor...an outstanding introduction to the topic for anyone who is interested in understanding the basic ideas and approaches to causal inference.” —Psychometrika “A very valuable contribution...Highly recommended.” —International Statistical Review

Book Elements of Causal Inference

Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Book Causality

    Book Details:
  • Author : Judea Pearl
  • Publisher : Cambridge University Press
  • Release : 2009-09-14
  • ISBN : 052189560X
  • Pages : 487 pages

Download or read book Causality written by Judea Pearl and published by Cambridge University Press. This book was released on 2009-09-14 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...

Book Causality

    Book Details:
  • Author : Carlo Berzuini
  • Publisher : John Wiley & Sons
  • Release : 2012-06-04
  • ISBN : 1119941733
  • Pages : 387 pages

Download or read book Causality written by Carlo Berzuini and published by John Wiley & Sons. This book was released on 2012-06-04 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.

Book Design of Observational Studies

Download or read book Design of Observational Studies written by Paul R. Rosenbaum and published by Springer Science & Business Media. This book was released on 2009-10-22 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: An observational study is an empiric investigation of effects caused by treatments when randomized experimentation is unethical or infeasible. Observational studies are common in most fields that study the effects of treatments on people, including medicine, economics, epidemiology, education, psychology, political science and sociology. The quality and strength of evidence provided by an observational study is determined largely by its design. Design of Observational Studies is both an introduction to statistical inference in observational studies and a detailed discussion of the principles that guide the design of observational studies. Design of Observational Studies is divided into four parts. Chapters 2, 3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas discussed in Rosenbaum’s Observational Studies (also published by Springer) but in a less technical fashion. Part II discusses the practical aspects of using propensity scores and other tools to create a matched comparison that balances many covariates. Part II includes a chapter on matching in R. In Part III, the concept of design sensitivity is used to appraise the relative ability of competing designs to distinguish treatment effects from biases due to unmeasured covariates. Part IV discusses planning the analysis of an observational study, with particular reference to Sir Ronald Fisher’s striking advice for observational studies, "make your theories elaborate." The second edition of his book, Observational Studies, was published by Springer in 2002.

Book Designing Social Inquiry

Download or read book Designing Social Inquiry written by Gary King and published by Princeton University Press. This book was released on 1994-05-22 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designing Social Inquiry focuses on improving qualitative research, where numerical measurement is either impossible or undesirable. What are the right questions to ask? How should you define and make inferences about causal effects? How can you avoid bias? How many cases do you need, and how should they be selected? What are the consequences of unavoidable problems in qualitative research, such as measurement error, incomplete information, or omitted variables? What are proper ways to estimate and report the uncertainty of your conclusions?

Book Causation  Prediction  and Search

Download or read book Causation Prediction and Search written by Peter Spirtes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for anyone, regardless of discipline, who is interested in the use of statistical methods to help obtain scientific explanations or to predict the outcomes of actions, experiments or policies. Much of G. Udny Yule's work illustrates a vision of statistics whose goal is to investigate when and how causal influences may be reliably inferred, and their comparative strengths estimated, from statistical samples. Yule's enterprise has been largely replaced by Ronald Fisher's conception, in which there is a fundamental cleavage between experimental and non experimental inquiry, and statistics is largely unable to aid in causal inference without randomized experimental trials. Every now and then members of the statistical community express misgivings about this turn of events, and, in our view, rightly so. Our work represents a return to something like Yule's conception of the enterprise of theoretical statistics and its potential practical benefits. If intellectual history in the 20th century had gone otherwise, there might have been a discipline to which our work belongs. As it happens, there is not. We develop material that belongs to statistics, to computer science, and to philosophy; the combination may not be entirely satisfactory for specialists in any of these subjects. We hope it is nonetheless satisfactory for its purpose.

Book Statistical Causal Inferences and Their Applications in Public Health Research

Download or read book Statistical Causal Inferences and Their Applications in Public Health Research written by Hua He and published by Springer. This book was released on 2016-10-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in statistics, biostatistics, and computational biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.

Book Contemporary Methods and Austrian Economics

Download or read book Contemporary Methods and Austrian Economics written by Daniel J. D'Amico and published by Emerald Group Publishing. This book was released on 2022-01-27 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contemporary Methods and Austrian Economics, examines the relationship between Austrian economics and these new social scientific methods.