EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Ergodic IP Polynomial Szemeredi Theorem

Download or read book An Ergodic IP Polynomial Szemeredi Theorem written by Vitaly Bergelson and published by American Mathematical Soc.. This book was released on 2000 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors prove a polynomial multiple recurrence theorem for finitely many commuting measure preserving transformations of a probability space, extending a polynomial Szemerédi theorem appearing in [BL1]. The linear case is a consequence of an ergodic IP-Szemerédi theorem of Furstenberg and Katznelson ([FK2]). Several applications to the fine structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which we also prove a multiparameter weakly mixing polynomial ergodic theorem. The techniques and apparatus employed include a polynomialization of an IP structure theory developed in [FK2], an extension of Hindman's theorem due to Milliken and Taylor ([M], [T]), a polynomial version of the Hales-Jewett coloring theorem ([BL2]), and a theorem concerning limits of polynomially generated IP-systems of unitary operators ([BFM]).

Book Ergodic IP Polynomial Szemeredi Theorem

Download or read book Ergodic IP Polynomial Szemeredi Theorem written by Vitaly Bergelson and published by . This book was released on 2014-09-11 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which the authors also prove a multiparameter weakly mixing polynomial ergodic theorem. Techniques and apparatus employed include a polynomialization of an IP structure theory, an extension of Hindman's theorem due to Milliken and Taylor, a polynomial version of the Hales-Jewett coloring theorem, and a theorem concerning limits of polynomially generated IP systems of unitary operators. Author information is not given. Annotation copyrighted by Book News, Inc., Portland, OR.

Book Ultrafilters across Mathematics

Download or read book Ultrafilters across Mathematics written by Vitaly Bergelson and published by American Mathematical Soc.. This book was released on 2010 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state-of-the-art of applications in the whole spectrum of mathematics which are grounded on the use of ultrafilters and ultraproducts. It contains two general surveys on ultrafilters in set theory and on the ultraproduct construction, as well as papers that cover additive and combinatorial number theory, nonstandard methods and stochastic differential equations, measure theory, dynamics, Ramsey theory, algebra in the space of ultrafilters, and large cardinals.

Book Nilpotent Structures in Ergodic Theory

Download or read book Nilpotent Structures in Ergodic Theory written by Bernard Host and published by American Mathematical Soc.. This book was released on 2018-12-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields. Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the ergodic structure theorems, and the book includes numerous formulations of these deep results, along with detailed proofs. The structure theorems have many applications, both in ergodic theory and in related fields; the book develops the connections to topological dynamics, combinatorics, and number theory, including an overview of the role of nilsystems in each of these areas. The final section is devoted to applications of the structure theory, covering numerous convergence and recurrence results. The book is aimed at graduate students and researchers in ergodic theory, along with those who work in the related areas of arithmetic combinatorics, harmonic analysis, and number theory.

Book Topics in Dynamics and Ergodic Theory

Download or read book Topics in Dynamics and Ergodic Theory written by Sergey Bezuglyi and published by Cambridge University Press. This book was released on 2003-12-08 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a collection of survey papers by leading researchers in ergodic theory, low-dimensional and topological dynamics and it comprises nine chapters on a range of important topics. These include: the role and usefulness of ultrafilters in ergodic theory, topological dynamics and Ramsey theory; topological aspects of kneading theory together with an analogous 2-dimensional theory called pruning; the dynamics of Markov odometers, Bratteli-Vershik diagrams and orbit equivalence of non-singular automorphisms; geometric proofs of Mather's connecting and accelerating theorems; recent results in one dimensional smooth dynamics; periodic points of nonexpansive maps; arithmetic dynamics; the defect of factor maps; entropy theory for actions of countable amenable groups.

Book Modern Dynamical Systems and Applications

Download or read book Modern Dynamical Systems and Applications written by Michael Brin and published by Cambridge University Press. This book was released on 2004-08-16 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a broad collection of current research by leading experts in the theory of dynamical systems.

Book Handbook of Dynamical Systems

Download or read book Handbook of Dynamical Systems written by A. Katok and published by Elsevier. This book was released on 2005-12-17 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.

Book Proceedings of the International Congress of Mathematicians 2010  icm 2010   in 4 Volumes    Vol  I  Plenary Lectures and Ceremonies  Vols  Ii iv  Invited Lectures

Download or read book Proceedings of the International Congress of Mathematicians 2010 icm 2010 in 4 Volumes Vol I Plenary Lectures and Ceremonies Vols Ii iv Invited Lectures written by and published by World Scientific. This book was released on 2011 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings Of The International Congress Of Mathematicians 2010  Icm 2010   In 4 Volumes    Vol  I  Plenary Lectures And Ceremonies  Vols  Ii iv  Invited Lectures

Download or read book Proceedings Of The International Congress Of Mathematicians 2010 Icm 2010 In 4 Volumes Vol I Plenary Lectures And Ceremonies Vols Ii iv Invited Lectures written by Rajendra Bhatia and published by World Scientific. This book was released on 2011-06-06 with total page 4137 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.

Book The Abel Prize 2018 2022

Download or read book The Abel Prize 2018 2022 written by Helge Holden and published by Springer Nature. This book was released on 2024 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the winners of the Abel Prize in mathematics for the period 2018-2022: - Robert P. Langlands (2018) - Karen K. Uhlenbeck (2019) - Hillel Furstenberg and Gregory Margulis (2020) - Lászlo Lóvász and Avi Wigderson (2021) - Dennis P. Sullivan (2022) The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos from the period 2018-2022 showing many of the additional activities connected with the Abel Prize. This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer, 2014) as well as on The Abel Prize 2013-2017 (Springer, 2019), which profile the previous Abel Prize laureates.

Book Mathematics of Complexity and Dynamical Systems

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Book Ergodic Theory and Zd Actions

Download or read book Ergodic Theory and Zd Actions written by Mark Pollicott and published by Cambridge University Press. This book was released on 1996-03-28 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mixture of surveys and original articles that span the theory of Zd actions.

Book Operator Theoretic Aspects of Ergodic Theory

Download or read book Operator Theoretic Aspects of Ergodic Theory written by Tanja Eisner and published by Springer. This book was released on 2015-11-18 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory

Book Elemental Methods in Ergodic Ramsey Theory

Download or read book Elemental Methods in Ergodic Ramsey Theory written by Randall McCutcheon and published by Springer. This book was released on 2006-11-14 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, suitable for graduate students and professional mathematicians alike, didactically introduces methodologies due to Furstenberg and others for attacking problems in chromatic and density Ramsey theory via recurrence in topological dynamics and ergodic theory, respectively. Many standard results are proved, including the classical theorems of van der Waerden, Hindman, and Szemerédi. More importantly, the presentation strives to reflect the extent to which the field has been streamlined since breaking onto the scene around twenty years ago. Potential readers who were previously intrigued by the subject matter but found it daunting may want to give a second look.

Book Topics in Symbolic Dynamics and Applications

Download or read book Topics in Symbolic Dynamics and Applications written by F. Blanchard and published by Cambridge University Press. This book was released on 2000-06-29 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to recent developments in symbolic dynamics, and it comprises eight chapters. The first two are concerned with the study of symbolic sequences of 'low complexity', the following two introduce 'high complexity' systems. The later chapters go on to deal with more specialised topics including ergodic theory, number theory, and one-dimensional dynamics.

Book Rational Number Theory in the 20th Century

Download or read book Rational Number Theory in the 20th Century written by Władysław Narkiewicz and published by Springer Science & Business Media. This book was released on 2011-09-02 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.

Book Sub Laplacians with Drift on Lie Groups of Polynomial Volume Growth

Download or read book Sub Laplacians with Drift on Lie Groups of Polynomial Volume Growth written by Georgios K. Alexopoulos and published by American Mathematical Soc.. This book was released on 2002 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is intended for graduate students and research mathematicians interested in topological groups, Lie groups, and harmonic analysis.