Download or read book Enumerative Theory Of Maps written by Liu Yanpei and published by Springer Science & Business Media. This book was released on 2000-08-31 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author [Liu58].
Download or read book Enumerative Geometry and String Theory written by Sheldon Katz and published by American Mathematical Soc.. This book was released on 2006 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perhaps the most famous example of how ideas from modern physics have revolutionized mathematics is the way string theory has led to an overhaul of enumerative geometry, an area of mathematics that started in the eighteen hundreds. Century-old problems of enumerating geometric configurations have now been solved using new and deep mathematical techniques inspired by physics! The book begins with an insightful introduction to enumerative geometry. From there, the goal becomes explaining the more advanced elements of enumerative algebraic geometry. Along the way, there are some crash courses on intermediate topics which are essential tools for the student of modern mathematics, such as cohomology and other topics in geometry. The physics content assumes nothing beyond a first undergraduate course. The focus is on explaining the action principle in physics, the idea of string theory, and how these directly lead to questions in geometry. Once these topics are in place, the connection between physics and enumerative geometry is made with the introduction of topological quantum field theory and quantum cohomology.
Download or read book Enumerative Combinatorics Volume 1 written by Richard P. Stanley and published by Cambridge University Press. This book was released on 2012 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Richard Stanley's two-volume basic introduction to enumerative combinatorics has become the standard guide to the topic for students and experts alike. This thoroughly revised second edition of Volume 1 includes ten new sections and more than 300 new exercises, most with solutions, reflecting numerous new developments since the publication of the first edition in 1986. The author brings the coverage up to date and includes a wide variety of additional applications and examples, as well as updated and expanded chapter bibliographies. Many of the less difficult new exercises have no solutions so that they can more easily be assigned to students. The material on P-partitions has been rearranged and generalized; the treatment of permutation statistics has been greatly enlarged; and there are also new sections on q-analogues of permutations, hyperplane arrangements, the cd-index, promotion and evacuation and differential posets.
Download or read book Smarandache Geometries Map Theories with Applications I English and Chinese written by Linfan Mao and published by Infinite Study. This book was released on 2007 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: 800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Download or read book Handbook of Enumerative Combinatorics written by Miklos Bona and published by CRC Press. This book was released on 2015-03-24 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
Download or read book An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces written by David Jackson and published by CRC Press. This book was released on 2000-09-15 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maps are beguilingly simple structures with deep and ubiquitous properties. They arise in an essential way in many areas of mathematics and mathematical physics, but require considerable time and computational effort to generate. Few collected drawings are available for reference, and little has been written, in book form, about their enumerative a
Download or read book Walk Through Combinatorics A An Introduction To Enumeration And Graph Theory Third Edition written by Miklos Bona and published by World Scientific Publishing Company. This book was released on 2011-05-09 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course.Just as with the first two editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs.The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs (new to this edition), enumeration under group action (new to this edition), generating functions of labeled and unlabeled structures and algorithms and complexity.As the goal of the book is to encourage students to learn more combinatorics, every effort has been made to provide them with a not only useful, but also enjoyable and engaging reading.The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected].
Download or read book Graphs on Surfaces and Their Applications written by Sergei K. Lando and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Download or read book Graduate Textbook of Mathematics Smarandache Multi Space Theory second edition written by Linfan Mao and published by Infinite Study. This book was released on 2011-01-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Smarandache multi-space is a union of n different spaces equippedwith different structures for an integer n 2, which can be used for systems both innature or human beings. This textbook introduces Smarandache multi-spaces such asthose of algebraic multi-spaces, including graph multi-spaces, multi-groups, multi-rings,multi-fields, vector multi-spaces, geometrical multi-spaces, particularly map geometrywith or without boundary, pseudo-Euclidean geometry on Rn, combinatorial Euclideanspaces, combinatorial manifolds, topological groups and topological multi-groups, combinatorialmetric spaces, ¿ ¿ ¿, etc. and applications of Smarandache multi-spaces, particularlyto physics, economy and epidemiology. In fact, Smarandache multi-spacesunderlying graphs are an important systematically notion for scientific research in 21stcentury. This book can be applicable for graduate students in combinatorics, topologicalgraphs, Smarandache geometry, physics and macro-economy as a textbook.
Download or read book Algebraic Geometry written by Spencer Bloch and published by American Mathematical Soc.. This book was released on 1987 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Canadian Mathematical Bulletin written by and published by . This book was released on 1974-09 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introductory Map Theory written by Yanpei Liu and published by Infinite Study. This book was released on 2010 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an introductory work, this book contains the elementary materials in map theory, includingembeddings of a graph, abstract maps, duality, orientable and non-orientable maps, isomorphisms of maps and the enumeration of rooted or unrooted maps, particularly, thejoint tree representation of an embedding of a graph on two dimensional manifolds, whichenables one to make the complication much simpler on map enumeration. All of theseare valuable for researchers and students in combinatorics, graphs and low dimensionaltopology.A Smarandache system (Sigma;R) is such a mathematical system with at leastone Smarandachely denied rule r in R such that it behaves in at least two different wayswithin the same set Sigma, i.e., validated and invalided, or only invalided but in multiple distinctways. A map is a 2-cell decomposition of surface, which can be seen as a connectedgraphs in development from partition to permutation, also a basis for constructing Smarandachesystems, particularly, Smarandache 2-manifolds for Smarandache geometries.
Download or read book Automata Languages and Programming written by Ugo Montanari and published by Springer. This book was released on 2003-08-06 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 27th International Colloquium on Automata, Languages and Programming, ICALP 2000, held in Geneva, Switzerland in July 2000. The 69 revised full papers presented together with nine invited contributions were carefully reviewed and selected from a total of 196 extended abstracts submitted for the two tracks on algorithms, automata, complexity, and games and on logic, semantics, and programming theory. All in all, the volume presents an unique snapshot of the state-of-the-art in theoretical computer science.
Download or read book Graphical Enumeration written by Frank Harary and published by Elsevier. This book was released on 2014-05-10 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphical Enumeration deals with the enumeration of various kinds of graphs. Topics covered range from labeled enumeration and George Pólya's theorem to rooted and unrooted trees, graphs and digraphs, and power group enumeration. Superposition, blocks, and asymptotics are also discussed. A number of unsolved enumeration problems are presented. Comprised of 10 chapters, this book begins with an overview of labeled graphs, followed by a description of the basic enumeration theorem of Pólya. The next three chapters count an enormous variety of trees, graphs, and digraphs. The Power Group Enumeration Theorem is then described together with some of its applications, including the enumeration of self-complementary graphs and digraphs and finite automata. Two other chapters focus on the counting of superposition and blocks, while another chapter is devoted to asymptotic numbers that are developed for several different graphical structures. The book concludes with a comprehensive definitive list of unsolved graphical enumeration problems. This monograph will be of interest to both students and practitioners of mathematics.
Download or read book Combinatorial Functional Equations written by Yanpei Liu and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-12-16 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The second volume mainly presents several kinds of meson functional equations which are divided into three types: outer, inner and surface. It is suited for a wide readership, including pure and applied mathematicians, and also computer scientists.
Download or read book International Journal of Mathematical Combinatorics Volume 1 2010 written by Linfan Mao and published by Infinite Study. This book was released on with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Download or read book The Geometric Vein written by C. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.