EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Engineering of Mixed Phase Transition Metal Dichalcogenide Materials

Download or read book Engineering of Mixed Phase Transition Metal Dichalcogenide Materials written by William R. Scougale and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of smaller, and new computation devices continues to drive interest in the fundamental physical sciences and their possible applications to improved computation capability. With the infancy of quantum computing, much research has been devoted to developing greater noise tolerance in qubit technologies. In addition, other avenues for improvement remain for classical computing, particularly with scaling electronic systems from 3D to 2D. Recently, transition metal dichalcogenide materials have drawn interest due to their extensive variety of material properties, stable chemical state, and comparably easy exfoliation. These materials are routinely reduced to 2D sheets and can be stacked to produce devices. Unanticipated physical phenomena have been observed in such stacked layers, as seen with magic angle graphene. These properties are driven by moiré interactions between the layers, which can vary continuously with parameters such as lattice size and shape, twist angle, and strain. This produces an incredible number of possible combinations of materials and moiré patterns, all of which could produce useful properties. In this work, a mixed phase growth approach to local nanoscopic measurements is detailed. In particular, it is found that for tungsten disulfide these mixed phase crystals are ideal for examining a broad variety of phase mixing and moiré interactions. Finally, a few physical systems are examined in detail including a 2M-2H vertical heterostructure moiré pattern, the appearance of stripe phase moiré patterning not predicted by rigid modeling, and finally the realization of a possible Kondo Lattice on a 2M-2M-2H moiré region.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-14 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Narayanasamy Sabari Arul and published by Springer. This book was released on 2019-07-30 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.

Book Gas Solid Reactions

    Book Details:
  • Author : Julian Szekely
  • Publisher : Elsevier
  • Release : 2012-12-02
  • ISBN : 0323151396
  • Pages : 415 pages

Download or read book Gas Solid Reactions written by Julian Szekely and published by Elsevier. This book was released on 2012-12-02 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas-Solid Reactions describes gas-solid reaction systems, focusing on the four phenomena—external mass transfer, pore diffusion, adsorption/desorption, and chemical reaction. This book consists of eight chapters. After the introduction provided in Chapter 1, the basic components of gas-solid reactions are reviewed in Chapter 2. Chapter 3 describes the reactions of individual nonporous solid particles, while Chapter 4 elaborates the reaction of single porous particles. Solid-solid reactions proceeding through gaseous intermediates are considered in Chapter 5. Chapter 6 deals with the experimental approaches to the study of gas-solid reaction systems. How information on single-particle behavior may be used for the design of multiparticle, large-scale assemblies, and packed- and fluidized-bed reaction systems is deliberated in Chapter 7. The last chapter covers the specific gas-solid reaction systems, including some statistical indices indicating the economic importance of the systems and processes it's based on. This publication is recommended for practicing engineers engaged in process research, development, and design in the many fields where gas-solid reactions are important.

Book Phase Engineering of Low Dimensional Transition Metal Dichalcogenides

Download or read book Phase Engineering of Low Dimensional Transition Metal Dichalcogenides written by Bin Ouyang and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "With the probing of isomorphism within transition metal dichalcogenides (TMDs), there has been a drive to understand potential phase transitions, as well as the associated applications. In this thesis, in order to give theoretical insights into phase engineering, first principle density functional theory (DFT) numerical calculations are performed with the assistance of continuum models such as phonon theory and elastic mechanics. The scope of this thesis covers phase transition thermodynamics, optimization of phase engineering techniques as well as applications of controllable phase transformations. Initially, the mechanism and thermodynamics of phase transition are studied. Diagrams of phase stability are constructed to illustrate the competition among four potential isomorphs within representative MX2 candidates, namely, MoS2, MoSe2, WS2 and WSe2 Furthermore, with the guidance of phase stability diagrams, coupled lattice deformation and electrostatic gating are found to be feasible for experimental design.On the basis of the mechanistic understanding of phase transformation, efforts are also taken on discovering new routes of inducing phase transition. Several potential strategies of triggering phase transition are proposed. To be more specific, GaN (AlN) substrate engineering is found to be effective for manipulating phase stability. The charge transfer from the metal surface to the MX2 is identified as the origin of phase stability transitions. Meanwhile, introducing curvature by bending or rippling MX2s is pointed out to be more effective and experimentally feasible compared with planar deformation. With the assistance of elastic mechanics, the critical curvature radius has been predicted for each group of materials. Additionally, the tunable phase transformation has also been discovered in low dimensional nanostructures such as MoS2 nanotubes. With their extraordinary mechanical properties, phase stability can be further controlled with elastic strain engineering. Finally, with various techniques available to control phase transformation, new applications are ready to be revealed. For example, inherent heterostructures combining two isomorphic phases of the same material are presented with controllable direct band gap. Moreover, with the aid of a revised deformation potential model, the band gap transition under lattice deformation can be well predicted. These findings will serve as useful reference for designing novel optoelectronic devices.With all the studies presented in this thesis, theoretical instructions are provided covering mechanistic understanding, schematic designing and optoelectronic application of phase engineering within TMDs." --

Book Crystallography and Crystal Chemistry of Materials with Layered Structures

Download or read book Crystallography and Crystal Chemistry of Materials with Layered Structures written by F.A. Lévy and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, the chemistry and physics of materials with layered structures became an intensively investigated field in the study of the solid state. Research into physical properties of these crystals and especially investigations of their physical anisotropy related to the structural anisotropy has led to remarkable and perplexing results. Most of the layered materials exist in several polytypic modifications and can include stacking faults. The crystal structures are therefore complex and it became apparent that there was a great need for a review of the crystallographic data of materials approximating two-dimensional solids. This second volume in the series 'Physics and Chemistry of Materials with Layered Structures' has been written by specialists of different classes of layered materials. Structural data are reviewed and the most important relations between the structure and the chemical and physical properties are emphasized. The first three contributions are devoted to the transition metal dichalcogenides whose physical properties have been investigated in detail. The crystallographic data and crystal growth conditions are presented in the first paper. The second paper constitutes an incisive review of the phase transformations and charge density waves which have been observed in the metallic dichalcogenides. In two contributions the layered structures of newer ternary compounds are de scribed and the connection between structure and non-stoichiometry is discussed.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Processing Layered Transition Metal Dichalcogenides as Promising Building Blocks for Electrical Applications

Download or read book Processing Layered Transition Metal Dichalcogenides as Promising Building Blocks for Electrical Applications written by Sagi Appel (Materials Engineering) and published by . This book was released on 2015 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 2D Metal Carbides and Nitrides  MXenes

Download or read book 2D Metal Carbides and Nitrides MXenes written by Babak Anasori and published by Springer Nature. This book was released on 2019-10-30 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Semiconductors

Download or read book Semiconductors written by Martin I. Pech-Canul and published by Springer. This book was released on 2019-01-17 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to optical, optoelectronic, and semiconductor materials and provides an overview of the topic from its fundamentals to cutting-edge processing routes to groundbreaking technologies for the most recent applications. The book details the characterization and properties of these materials. Chemical methods of synthesis are emphasized by the authors throughout the publication. Describes new materials and updates to older materials that exhibit optical, optoelectronic and semiconductor behaviors; Covers the structural and mechanical aspects of the optical, optoelectronic and semiconductor materials for meeting mechanical property and safety requirements; Includes discussion of the environmental and sustainability issues regarding optical, optoelectronic, and semiconductor materials, from processing to recycling.

Book 2D Nanoscale Heterostructured Materials

Download or read book 2D Nanoscale Heterostructured Materials written by Satyabrata Jit and published by Elsevier. This book was released on 2020-05-09 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. - Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties - Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials - Discusses the applications of 2D heterostructured materials in various high-performance devices

Book Surface Engineering of Transition Metal Dichalcogenides for Two dimensional Electronic Device Applications

Download or read book Surface Engineering of Transition Metal Dichalcogenides for Two dimensional Electronic Device Applications written by Angelica Azcatl Zacatzi and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional transition metal dichalcogenides (TMDs) are considered potential channel materials for emerging electronic devices in the roadmap beyond Si-CMOS technology. Layered TMDs offer intrinsically an ultrathin body without compromising the semiconducting properties. For the implementation of TMDs in electronic device structures, the understanding of their surface properties is essential. This work combines a variety of materials characterization techniques such as in-situ X-ray photoelectron spectroscopy, atomic force microscopy, transmission electron microscopy, and Raman spectroscopy to investigate the chemistry and structure of TMDs upon different surface treatments. In addition, first-principle calculations are presented to give insights on the mechanism involved in the surface modification of TMD. The impact of the TMDs surface modification on processes for gate-oxide integration by atomic layer deposition and covalent doping are investigated here. This work provides a comprehensive understanding of the surface chemistry of TMDs for two-dimensional electronic device applications.

Book 2D Monoelemental Materials  Xenes  and Related Technologies

Download or read book 2D Monoelemental Materials Xenes and Related Technologies written by Zongyu Huang and published by CRC Press. This book was released on 2022-04-19 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Book Photoelectrochemical Engineering for Solar Harvesting

Download or read book Photoelectrochemical Engineering for Solar Harvesting written by Samrana Kazim and published by Elsevier. This book was released on 2024-06-24 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical Engineering for Solar Harvesting provides an up-to-date appraisal of the photon engineering of innovative catalysts for solar energy harvesting.Sunlight-driven fuel synthesis is the most sustainable and potentially economical option for producing energy vectors through water splitting. Thus this book focuses on the design of photocatalysts and water oxidation catalysts, as artificial photosynthesis and hydrogen fuel production via water oxidation (in place of fossil fuels) are two promising approaches towards renewable energy.The book critically analyzes the overall progress, potential challenges, and the possibility of industrialization of new catalysts in the near future. The primary emphasis of the discussion is on experimental approaches from materials synthesis to device applications, however, there will also be some introduction to relevant photochemistry concepts.Photoelectrochemical Engineering for Solar Harvesting is suitable for materials scientists and chemists who through the use of photonics are in continuous pursuit of improving the efficiencies of different devices used to capture solar energy for the generation of sustainable fuel. - Covers design of innovative energy materials such as photocatalysts and water oxidation catalysts for solar energy harvesting - Reviews briefly computational and theoretical approaches before providing comprehensive overview of experimental directions - Provides information to guide photon and photoelectrochemical engineering of catalysts for solar application

Book Hybrid Fiber Composites

Download or read book Hybrid Fiber Composites written by Anish Khan and published by John Wiley & Sons. This book was released on 2020-09-28 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials