EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources

Download or read book Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources written by Guillermo Gosset and published by Springer. This book was released on 2017-01-26 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews state of the art regarding strategies for generating and improving microbial strains designed for utilizing renewable raw materials. It discusses methods for genetically engineering of thermophilic bacteria, Saccharomyces cerevisiae, Escherichia coli and Zymomonas mobilis, as well as approaches for obtaining useful products from these renewable raw materials based on biotechnological processes using microbes to chemically transform them. However, the efficient transformation of lignocellulosic biomass or glycerol to useful products represents a major challenge: Biomass has to be treated physically and chemically to release a mixture of sugars that potentially can be employed by the microbial production strains. These hydrolytic treatments result in diverse toxic compounds being generated and released, that negatively impact strain performance. Furthermore, most of the commonly used industrial microbes do not have the natural capacity to efficiently utilize and transform the generated sugar mixtures or glycerol. The microbial species reviewed in this book possess particular advantages as production strains and are currently employed for the synthesis of numerous biofuels and chemicals. The book reviews the general and strain-specific genetic engineering strategies for the improvement of sugar mixtures and glycerol catabolism. The issue of lignocellulosic hydrolysate toxicity is addressed in several chapters, where genetic engineering and adaptive laboratory evolution strategies are reviewed and discussed. The objective of this book is to provide the current knowledge regarding strategies for the generation and improvement of microbial strains designed for the transformation of renewable raw materials into useful products. This book aims to become a reference for researchers and students working in this field.

Book Biomolecular Engineering Solutions for Renewable Specialty Chemicals

Download or read book Biomolecular Engineering Solutions for Renewable Specialty Chemicals written by R. Navanietha Krishnaraj and published by John Wiley & Sons. This book was released on 2021-12-09 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover biomolecular engineering technologies for the production of biofuels, pharmaceuticals, organic and amino acids, vitamins, biopolymers, surfactants, detergents, and enzymes In Biomolecular Engineering Solutions for Renewable Specialty Chemicals, distinguished researchers and editors Drs. R. Navanietha Krishnaraj and Rajesh K. Sani deliver a collection of insightful resources on advanced technologies in the synthesis and purification of value-added compounds. Readers will discover new technologies that assist in the commercialization of the production of value-added products. The editors also include resources that offer strategies for overcoming current limitations in biochemical synthesis, including purification. The articles within cover topics like the rewiring of anaerobic microbial processes for methane and hythane production, the extremophilic bioprocessing of wastes to biofuels, reverse methanogenesis of methane to biopolymers and value-added products, and more. The book presents advanced concepts and biomolecular engineering technologies for the production of high-value, low-volume products, like therapeutic molecules, and describes methods for improving microbes and enzymes using protein engineering, metabolic engineering, and systems biology approaches for converting wastes. Readers will also discover: A thorough introduction to engineered microorganisms for the production of biocommodities and microbial production of vanillin from ferulic acid Explorations of antibiotic trends in microbial therapy, including current approaches and future prospects, as well as fermentation strategies in the food and beverage industry Practical discussions of bioactive oligosaccharides, including their production, characterization, and applications In-depth treatments of biopolymers, including a retrospective analysis in the facets of biomedical engineering Perfect for researchers and practicing professionals in the areas of environmental and industrial biotechnology, biomedicine, and the biological sciences, Biomolecular Engineering Solutions for Renewable Specialty Chemicals is also an invaluable resource for students taking courses involving biorefineries, biovalorization, industrial biotechnology, and environmental biotechnology.

Book Engineering of Microbial Biosynthetic Pathways

Download or read book Engineering of Microbial Biosynthetic Pathways written by Vijai Singh and published by Springer Nature. This book was released on 2020-07-16 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the basic and advanced metabolic engineering technologies used to generate natural metabolites and industrially important biomolecules. Metabolic engineering has the potential to produce large quantities of valuable biomolecules in a renewable and sustainable manner by extending or modifying biosynthetic pathways in a wide range of organisms. It has been successfully used to produce chemicals, drugs, enzymes, amino acids, antibiotics, biofuels, and industrially important pharmaceuticals. The book comprehensively reviews the various metabolites detection, extraction and biosensors and the metabolic engineering of microbial strains for the production of industrially useful enzymes, proteins, organic acids, vitamins and antibiotics, therapeutics, chemicals, and biofuels. It also discusses various genetic engineering and synthetic biology tools for metabolic engineering. In closing, the book discusses ethical, patenting and regulatory issues in the metabolic engineering of microbes. This book is a valuable source not only for beginners in metabolic engineering, but also students, researchers, biotechnology and metabolic engineering based company.

Book Biotechnology for Biofuel Production and Optimization

Download or read book Biotechnology for Biofuel Production and Optimization written by Carrie A Eckert and published by Elsevier. This book was released on 2016-01-19 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up

Book Bioprocessing for Value Added Products from Renewable Resources

Download or read book Bioprocessing for Value Added Products from Renewable Resources written by Shang-Tian Yang and published by Elsevier. This book was released on 2011-08-11 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioprocessing for Value-Added Products from Renewable Resources provides a timely review of new and unconventional techniques for manufacturing high-value products based on simple biological material. The book discusses the principles underpinning modern industrial biotechnology and describes a unique collection of novel bioprocesses for a sustainable future. This book begins in a very structured way. It first looks at the modern technologies that form the basis for creating a bio-based industry before describing the various organisms that are suitable for bioprocessing - from bacteria to algae - as well as their unique characteristics. This is followed by a discussion of novel, experimental bioprocesses, such as the production of medicinal chemicals, the production of chiral compounds and the design of biofuel cells. The book concludes with examples where biological, renewable resources become an important feedstock for large-scale industrial production. This book is suitable for researchers, practitioners, students, and consultants in the bioprocess and biotechnology fields, and for others who are interested in biotechnology, engineering, industrial microbiology and chemical engineering. ·Reviews the principles underpinning modern industrial biotechnology ·Provides a unique collection of novel bioprocesses for a sustainable future ·Gives examples of economical use of renewable resources as feedstocks ·Suitable for both non-experts and experts in the bioproduct industry

Book Sustainable Biotechnology  Enzymatic Resources of Renewable Energy

Download or read book Sustainable Biotechnology Enzymatic Resources of Renewable Energy written by Om V. Singh and published by Springer. This book was released on 2018-08-25 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature offers abundant renewable resources that can be used to partially replace fossil fuels and commodity chemicals but issues of cost, technology readiness levels, and compatibility with existing distribution networks remain huge challenges. Cellulosic ethanol and biodiesel are the most immediately obvious target fuels, with hydrogen, methane and butanol as other potentially viable products. This book continues to bridge the technology gap and focus on critical aspects of lignocellulosic biomolecules and the respective mechanisms regulating their bioconversion to liquid fuels into energy and value-added products of industrial significance. This book is a collection of reviews elucidating several broad-ranging areas of progress and challenges in the utilization of sustainable resources of renewable energy, especially in biofuels. This book comes just at a time when government and industries are accelerating their efforts in the exploration of alternative energy resources, with expectations of the establishment of long-term sustainable alternatives to petroleum-based liquid fuels. Apart from liquid fuel this book also emphasizes the use of sustainable resources for value-added products, which may help in revitalizing the biotechnology industry at a broader scale. This book also provides a comprehensive review of basic literature and advance research methodologies to graduate students studying environmental microbiology, chemical engineering, bio-economy and microbial biotechnology.

Book Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass

Download or read book Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass written by Arindam Kuila and published by Elsevier. This book was released on 2020-02-19 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass

Book Bioprocessing of Renewable Resources to Commodity Bioproducts

Download or read book Bioprocessing of Renewable Resources to Commodity Bioproducts written by Virendra S. Bisaria and published by John Wiley & Sons. This book was released on 2014-04-07 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the vision of a successful biorefinery—the lignocelluloic biomass needs to be efficiently converted to its constituent monomers, comprising mainly of sugars such as glucose, xylose, mannose and arabinose. Accordingly, the first part of the book deals with aspects crucial for the pretreatment and hydrolysis of biomass to give sugars in high yield, as well as the general aspects of bioprocessing technologies which will enable the development of biorefineries through inputs of metabolic engineering, fermentation, downstream processing and formulation. The second part of the book gives the current status and future directions of the biological processes for production of ethanol (a biofuel as well as an important commodity raw material), solvents (butanol, isobutanol, butanediols, propanediols), organic acids (lactic acid, 3-hydroxy propionic acid, fumaric acid, succinic acid and adipic acid), and amino acid (glutamic acid). The commercial production of some of these commodity bioproducts in the near future will have a far reaching effect in realizing our goal of sustainable conversion of these renewable resources and realizing the concept of biorefinery. Suitable for researchers, practitioners, graduate students and consultants in biochemical/ bioprocess engineering, industrial microbiology, bioprocess technology, metabolic engineering, environmental science and energy, the book offers: Exemplifies the application of metabolic engineering approaches for development of microbial cell factories Provides a unique perspective to the industry about the scientific problems and their possible solutions in making a bioprocess work for commercial production of commodity bioproducts Discusses the processing of renewable resources, such as plant biomass, for mass production of commodity chemicals and liquid fuels to meet our ever- increasing demands Encourages sustainable green technologies for the utilization of renewable resources Offers timely solutions to help address the energy problem as non-renewable fossil oil will soon be unavailable

Book Green Technologies for Sustainable Production  Volume 1

Download or read book Green Technologies for Sustainable Production Volume 1 written by Alok Kumar Patel and published by John Wiley & Sons. This book was released on 2023-08-09 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: RENEWABLE ENERGY INNOVATIONS This critical text, designed for microbiologists, biotechnologists, entrepreneurs, process engineers, chemical engineers, electrical engineers, physicists, and environmentalists, assesses the current knowledge about lab-scale and large-scale production of renewable and sustainable fuels, chemicals, and materials. Global warming is having a huge impact on the world’s ecosystem. Glaciers have shrunk, ice on rivers and lakes is breaking up early, and plant and animal ranges have relocated. On a worldwide scale, the threat posed by climate change and pollution is obvious. A green and sustainable future necessitates using renewable resources to produce fuels, chemicals, and materials. This book investigates diverse bioprocesses that are crucial to everyday life, including the key concerns regarding the generation of biofuels, energy, and food securities, along with waste management. Commercial interest in biotechnological processes has risen to produce pharmaceuticals, health supplements, foodstuffs, biofuels, and chemicals using a biocatalyst such as enzymes, microorganisms, plant cells, or animal cells in a bioreactor. The sustainability of renewable biomass, replacement of depleted fossil fuels, and the mitigation of greenhouse gas emissions from the existing chemical and oil industries are the key benefits of switching to bioproducts. This book discusses bioprocessing to produce biofuels, biobased chemicals, bioproducts, and biomass biorefinery processes. This involves designing novel pretreatment and fractionation technologies for lignocellulose biomass into cellulose, hemicellulose, and lignin and the conversion of these streams into biofuels and biobased chemicals via biochemical and thermochemical routes. This book also covers the advancement of oleaginous microorganisms for biofuels and nutraceutical, biological wastewater treatment. Written and edited by authors from leading biotechnology research groups from across the world, this exciting new volume covers all of these technologies, including the basic concepts and the problems and solutions involved with the practical applications in the real world. Whether for the veteran engineer or scientist, student, manager, or another technician working in the field, this volume is essential for any library.

Book Microbial Production Towards Renewable Chemicals

Download or read book Microbial Production Towards Renewable Chemicals written by Shuchi H. Desai and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemicals such as liquid fuels, fragrances, and polymer precursors are heavily relied upon in society to complete daily tasks. Currently, most of these chemicals are predominantly produced from petroleum, which is a finite resource on this planet. Environmental and national security concerns have catalyzed the exploration of alternative sustainable production methods for these chemicals. One route is to utilize microorganisms and the tools of metabolic engineering to produce a desired chemical. Microbes consume biomass, which is a renewable and sustainable feedstock that they can convert into chemicals. Additionally, microorganisms are very diverse and provide a tool box about the numerous chemical reactions that are biologically possible. Applying metabolic engineering techniques, novel metabolic pathways can be constructed by expression of heterologous enzymes in a host organisms to produce a target chemical. To contribute to the field of metabolic engineering, this study presents metabolic routes for the production of industrially valuable chemicals. Isobutanol (a drop-in biofuel candidate) production is demonstrated from the lignocellulosic (non-food crop) components cellobiose and cellobionic acid. The fragrance and industrial solvent isobutyl acetate was produced by an engineered Escherichia coli. To improve carbon yield for this production platform, a novel metabolic route was designed and demonstrated. To test the limits of biology and expand upon its function, routes for conversion of gaseous alkenes (C2-C4) to their respective diols have been shown.

Book Chemicals from Biomass

    Book Details:
  • Author : Debalina Sengupta
  • Publisher : CRC Press
  • Release : 2012-07-05
  • ISBN : 1439878145
  • Pages : 493 pages

Download or read book Chemicals from Biomass written by Debalina Sengupta and published by CRC Press. This book was released on 2012-07-05 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemicals from Biomass: Integrating Bioprocesses into Chemical Production Complexes for Sustainable Development helps engineers optimize the development of new chemical and polymer plants that use renewable resources to replace the output of goods and services from existing plants. It also discusses the conversion of those existing plants into facilities that are based on renewable resources that may require nonrenewable resource supplements. Relying on extensive reviews of biomass as feedstock and the production of chemicals from biomass, this book identifies and illustrates the design of new chemical processes (bioprocesses) that use renewable feedstock (biomass) as raw materials. The authors show how these new bioprocesses can be integrated into the existing plant in a chemical production complex to obtain the best combination of energy-efficient and environmentally acceptable facilities. This presented methodology is an essential component of sustainable development, and these steps are essential to achieving a sustainable chemical industry. The authors evaluate potential bioprocesses based on a conceptual design of biomass-based chemical production, and they use Aspen HYSYS® and Aspen ICARUS® to perform simulations and economic evaluations of these processes. The book outlines detailed process designs created for seven bioprocesses that use biomass and carbon dioxide as feedstock to produce a range of chemicals and monomers. These include fermentation, transesterification, anaerobic digestion, gasification, and algae oil production. These process designs, and associated simulation codes, can be downloaded for modification, as needed. The methodology presented in this book can be used to evaluate energy efficiency, cost, sustainability, and environmental acceptability of plants and new products. Based on the results of that analysis, the methodology can be applied to other chemical complexes for new bioprocesses, reduced emissions, and energy savings.

Book Microorganisms in Biorefineries

Download or read book Microorganisms in Biorefineries written by Birgit Kamm and published by Springer. This book was released on 2014-11-27 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes how plant biomass can be used as renewable feedstock for producing and further processing various products. Particular attention is given to microbial processes both for the digestion of biomass and the synthesis of platform chemicals, biofuels and secondary products. Topics covered include: new metabolic pathways of microbes living on green plants and in silage; using lignocellulosic hydrolysates for the production of polyhydroxyalkanoates; fungi such as Penicillium as host for the production of heterologous proteins and enzymes; bioconversion of sugar hydrolysates into lipids; production of succinic acid, lactones, lactic acid and organic lactates using different bacteria species; cellulose hydrolyzing bacteria in the production of biogas from plant biomass; and isoprenoid compounds in engineered microbes.

Book Biorefinery Production Technologies for Chemicals and Energy

Download or read book Biorefinery Production Technologies for Chemicals and Energy written by Arindam Kuila and published by John Wiley & Sons. This book was released on 2020-09-22 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The first part of the book presents the fundamentals of the biorefinery concept. The second part describes the biorefinery approach for production of several industrially important chemicals from waste biomass and agro residues. These chemicals include industrially important C4. C5 and C6 chemicals, propylene glycol, glycerol byproducts, dyes and inks etc. Each and every chemical has its own industrial value and the book describes the production processes and strategies at the industrial level. The final part of the book describes the various biorefinery approaches and economic analysis for the different types of biofuel production.

Book Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production

Download or read book Metabolic Regulation and Metabolic Engineering for Biofuel and Biochemical Production written by Kazuyuki Shimizu and published by CRC Press. This book was released on 2017-07-12 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global warming problem is becoming critical year by year, causing climate disaster all over the world, where it has been believed that the CO2 gas emitted from the factories and the burning of fossil fuels may be one of the reasons of global warming. Moreover, the global stock of fossil fuels is limited, and may run out soon within several tens of years. Although wind, geo-thermal, and tide energies have been considered as clean energy sources, those depend on the land or sea locations and subject to the climate change. Biofuel and biochemical production from renewable bio-resources has thus been paid recent attention from environmental protection and energy production points of view, where the current chemical and energy producing plants can be also utilized with slight modification. The so-called 1st generation biofuels have been produced from corn starch and sugarcane in particular in USA and Brazil. However, this causes the problem of the so-called "food and energy issues" as the production scale increases. The 2nd generation biofuel production from lingo-cellulosic biomass or wastes has thus been paid recent attention. However, it requires energy intensive pretreatment for the degradation of lingo-cellulosic biomass, and the fermentation is slow due to low growth rate, and thus the productivity of biofuels and bio-chemicals is low. The 3rd generation biofuel production from photosynthetic organisms such as cyanobacteria and algae has been also paid attention, because such organisms can grow with only sun light and CO2 in the air, but the cell growth rate and thus the productivity of the fuels is significantly low. The main part or core of such production processes is the fermentation by micro-organisms. In particular, it is critical to properly understand the cell metabolism followed by the efficient metabolic engineering. The book gives comprehensive explanation of the cell metabolism and the metabolic regulation mechanisms of a variety of micro-organisms. Then the efficient metabolic engineering approaches are explained to properly design the microbial cell factories for the efficient cell growth and biofuel and biochemical production.

Book Microbial Cell Factories Engineering for Production of Biomolecules

Download or read book Microbial Cell Factories Engineering for Production of Biomolecules written by Vijai Singh and published by Academic Press. This book was released on 2021-02-13 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs

Book Sustainable Production Innovations

Download or read book Sustainable Production Innovations written by Alok Kumar Patel and published by John Wiley & Sons. This book was released on 2023-08-02 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: SUSTAINABLE PRODUCTION INNOVATIONS Presenting the latest technologies and practices in this ever-changing field, this groundbreaking new volume covers the gambit for providing solutions and practical applications of smart and efficient energy systems. The global and climate changes we are witnessing are primarily driven by factors such as rising population, economic growth, and industrialization. These changes have led to an increase in atmospheric CO2, pollution, deforestation, water scarcity, and hunger, among other pressing issues. To ensure a green and sustainable future, it is crucial to harness renewable resources for the production of fuels, chemicals, and materials. The book, Sustainable Production Innovations, addresses several bioprocesses that are integral to our daily lives, tackling important topics such as biofuel production, energy and food security, and wastewater management. The commercial interest in biotechnological processes has grown significantly due to their ability to utilize biocatalysts such as enzymes, bacteria, plant cells, or animal cells in bioreactors for the production of medications, health supplements, foods, biofuels, and chemicals. Switching to bioproducts offers key benefits such as the sustainability of third-generation biofuels, CO2 sequestration, effective waste utilization, and meeting the increasing demand for clean water. The book explores various procedures used in biomass biorefineries and bioprocessing for the production of biofuels, biobased chemicals, and bioproducts. It also delves into advancements in utilizing oleaginous microorganisms for biofuels and nutraceuticals, biological wastewater treatment, and microplastic detection techniques in water. Additionally, the book covers topics such as biolubricant technologies, bioprocessing of agricultural and forest waste, biotechnological approaches in the cosmetic industry, and large-scale applications of nanomaterials for water treatment. Authored by experts from leading biotechnology research groups around the world, the book comprises 13 chapters featuring the latest research in each subject. It is a valuable resource for scholars in chemical engineering, applied microbiology, biotechnology, agricultural biotechnology, environmental biotechnology, and related fields, offering new insights into the sustainable use of renewable energy and biochemicals. Professionals, including biochemical engineers, phycologists, bioprocess engineers, chemical engineers, scientists, and researchers in the water, food, pharmaceutical, and renewable energy industries will find this book beneficial. Likewise, students and faculty in the chemical engineering and energy departments will gain valuable knowledge from its contents.

Book Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources

Download or read book Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources written by Anuj K. Chandel and published by Elsevier. This book was released on 2021-10-13 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources: Status and Innovation covers all important technological aspects of the production of biochemicals from renewable feedstock. All the important technological aspects of biomass conversion for example biomass pretreatment, enzymatic hydrolysis for cellulosic sugars production followed by the fermentation into chemicals and downstream recovery of the products is reviewed. Recent technological advancements in suitable microorganism development, bioprocess engineering for biomass conversion for cellulosic sugars production and various fermentation strategies and downstream recovery of these top 12 products is presented. Each bio-chemical selected by US Department of Energy i.e. ethanol, xylitol/sorbitol, furans (5-HMF, 2,5-FDCA,), glycerol & its derivatives, hydrocarbons) isoprene, iso-butadienes and others), lactic acid, succinic acid, 3-hydroxy propionic acid, levulinic acid and biohydrogen/biogas is included in a single book chapter. In addition to the technical aspects of these 12 biochemicals, general technological challenges dealing with lignocellulose refining, perspectives and solutions are elaborated in the book. Also, life cycle analysis, techno-economic viability, and sustainability index of biofuels/biochemicals are comprehensively reviewed in the book. - covers uniquely designed scientific and technical literature on USDOE top listed biochemicals production with clear images and tables in the context of biomass valorisation - Includes the clear and simplistic illustration of technological updates on biomass processing, system biology, microbial fermentation, catalysis, regeneration and monitoring of renewable energy and chemicals production - Presents fast and reliable source of information on techno-economic analysis, life cycle analysis, technological scouting at industrial scale - Entails fundamental aspects, recent developments in production of renewable chemicals as building block materials for commodity chemicals production