EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Energy Level Alignment Mechanisms at Inorganic organic Semiconductor Interfaces Investigated with Photoelectron Spectroscopy

Download or read book Energy Level Alignment Mechanisms at Inorganic organic Semiconductor Interfaces Investigated with Photoelectron Spectroscopy written by Thorsten Schultz and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Level Control at Hybrid Inorganic Organic Semiconductor Interfaces

Download or read book Energy Level Control at Hybrid Inorganic Organic Semiconductor Interfaces written by Raphael Schlesinger and published by Springer. This book was released on 2016-11-21 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.

Book Energy Level Alignment and Electron Transport Through Metal Organic Contacts

Download or read book Energy Level Alignment and Electron Transport Through Metal Organic Contacts written by Enrique Abad and published by Springer Science & Business Media. This book was released on 2012-09-16 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.

Book Encyclopedia of Interfacial Chemistry

Download or read book Encyclopedia of Interfacial Chemistry written by and published by Elsevier. This book was released on 2018-03-29 with total page 5276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions

Book Organic Molecules on Metal and Oxide Semiconductor Substrates

Download or read book Organic Molecules on Metal and Oxide Semiconductor Substrates written by Charles M. Ruggieri and published by . This book was released on 2016 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2(110), which exhibits chemical hybridization accompanied by molecular distortion, as well as extreme charge transfer resulting in the development of a space charge layer in the oxide. Thus, we present a broad experimental and theoretical perspective on the study of organic/metal and organic/oxide interfaces, elucidating fundamental physical interactions that govern molecular organization and energy level alignment.

Book The Molecule Metal Interface

Download or read book The Molecule Metal Interface written by Norbert Koch and published by John Wiley & Sons. This book was released on 2013-02-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface. The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electronic structure of the molecule-metal interface. In the closing chapter the editors discuss future perspectives. Written as a senior graduate or senior undergraduate textbook for students in physics, chemistry, materials science or engineering, the book's interdisciplinary approach makes it equally relevant for researchers working in the field of organic and molecular electronics.

Book Journal of the Physical Society of Japan

Download or read book Journal of the Physical Society of Japan written by and published by . This book was released on 2018 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Springer Handbook of Inorganic Photochemistry

Download or read book Springer Handbook of Inorganic Photochemistry written by Detlef Bahnemann and published by Springer Nature. This book was released on 2022-06-25 with total page 1914 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook comprehensively covers the field of inorganic photochemistry from the fundamentals to the main applications. The first section of the book describes the historical development of inorganic photochemistry, along with the fundamentals related to this multidisciplinary scientific field. The main experimental techniques employed in state-of-art studies are described in detail in the second section followed by a third section including theoretical investigations in the field. In the next three sections, the photophysical and photochemical properties of coordination compounds, supramolecular systems and inorganic semiconductors are summarized by experts on these materials. Finally, the application of photoactive inorganic compounds in key sectors of our society is highlighted. The sections cover applications in bioimaging and sensing, drug delivery and cancer therapy, solar energy conversion to electricity and fuels, organic synthesis, environmental remediation and optoelectronics among others. The chapters provide a concise overview of the main achievements in the recent years and highlight the challenges for future research. This handbook offers a unique compilation for practitioners of inorganic photochemistry in both industry and academia.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by J.-P. Colinge and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Book Modern Techniques of Surface Science

Download or read book Modern Techniques of Surface Science written by D. P. Woodruff and published by Cambridge University Press. This book was released on 1994-03-03 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.

Book Oxide Materials at the Two Dimensional Limit

Download or read book Oxide Materials at the Two Dimensional Limit written by Falko P. Netzer and published by Springer. This book was released on 2016-04-01 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book Spectroscopy of Complex Oxide Interfaces

Download or read book Spectroscopy of Complex Oxide Interfaces written by Claudia Cancellieri and published by Springer. This book was released on 2018-04-09 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.

Book Hybrid Organic Inorganic Perovskites

Download or read book Hybrid Organic Inorganic Perovskites written by Li Wei and published by John Wiley & Sons. This book was released on 2020-10-19 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.

Book Solution Processable Components for Organic Electronic Devices

Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-09-16 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Book Hard X ray Photoelectron Spectroscopy  HAXPES

Download or read book Hard X ray Photoelectron Spectroscopy HAXPES written by Joseph Woicik and published by Springer. This book was released on 2015-12-26 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Book Organic Solar Cells

Download or read book Organic Solar Cells written by Wallace C.H. Choy and published by Springer Science & Business Media. This book was released on 2012-11-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic solar cells have emerged as new promising photovoltaic devices due to their potential applications in large area, printable and flexible solar panels. Organic Solar Cells: Materials and Device Physics offers an updated review on the topics covering the synthesis, properties and applications of new materials for various critical roles in devices from electrodes, interface and carrier transport materials, to the active layer composed of donors and acceptors. Addressing the important device physics issues of carrier and exciton dynamics and interface stability and novel light trapping structures, the potential for hybrid organic solar cells to provide high efficiency solar cells is examined and discussed in detail. Specific chapters covers key areas including: Latest research and designs for highly effective polymer donors/acceptors and interface materials Synthesis and application of highly transparent and conductive graphene Exciton and charge dynamics for in-depth understanding of the mechanism underlying organic solar cells. New potentials and emerging functionalities of plasmonic effects in OSCs Interface Degradation Mechanisms in organic photovoltaics improving the entire device lifetime Device architecture and operation mechanism of organic/ inorganic hybrid solar cells for next generation of high performance photovoltaics This reference can be practically and theoretically applied by senior undergraduates, postgraduates, engineers, scientists, researchers, and project managers with some fundamental knowledge in organic and inorganic semiconductor materials or devices.