EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sustainable Natural Gas Drilling

Download or read book Sustainable Natural Gas Drilling written by David Wood and published by Elsevier. This book was released on 2024-03-13 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable Natural Gas Drilling, the latest release in The Fundamentals and Sustainable Advances in Natural Gas Science and Engineering series, delivers many of the technical fundamentals needed in the natural gas industry with an additional sustainability lens. Introductory topics include underbalanced technologies, well integrity, and well trajectory. Advanced applications include utilizing nanoparticles to reduce environmental impact, and techniques to drill for underground gas storage and carbon capture operations. Supported by corporate and academic contributors along with two well-distinguished editors, Sustainable Natural Gas Drilling provides today's natural gas engineers the knowledge to adjust current drilling practices in a more environmentally sustainable way. - Accelerate emissions with case studies and visuals to illustrate how new principles can be applied in practical situations - Understand innovative advances that are leading to improved environmental performance - Bridge from theory to application with worldwide contributors representing academia and industry

Book Applications of Artificial Intelligence  AI  and Machine Learning  ML  in the Petroleum Industry

Download or read book Applications of Artificial Intelligence AI and Machine Learning ML in the Petroleum Industry written by Manan Shah and published by CRC Press. This book was released on 2022-09-02 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, raw data on any industry is widely available. With the help of artificial intelligence (AI) and machine learning (ML), this data can be used to gain meaningful insights. In addition, as data is the new raw material for today’s world, AI and ML will be applied in every industrial sector. Industry 4.0 mainly focuses on the automation of things. From that perspective, the oil and gas industry is one of the largest industries in terms of economy and energy. Applications of Artificial Intelligence (AI) and Machine Learning (ML) in the Petroleum Industry analyzes the use of AI and ML in the oil and gas industry across all three sectors, namely upstream, midstream, and downstream. It covers every aspect of the petroleum industry as related to the application of AI and ML, ranging from exploration, data management, extraction, processing, real-time data analysis, monitoring, cloud-based connectivity system, and conditions analysis, to the final delivery of the product to the end customer, while taking into account the incorporation of the safety measures for a better operation and the efficient and effective execution of operations. This book explores the variety of applications that can be integrated to support the existing petroleum and adjacent sectors to solve industry problems. It will serve as a useful guide for professionals working in the petroleum industry, industrial engineers, AI and ML experts and researchers, as well as students.

Book Applications of Artificial Intelligence Techniques in the Petroleum Industry

Download or read book Applications of Artificial Intelligence Techniques in the Petroleum Industry written by Abdolhossein Hemmati-Sarapardeh and published by Gulf Professional Publishing. This book was released on 2020-08-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input

Book Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Download or read book Deep Learning Techniques and Optimization Strategies in Big Data Analytics written by Thomas, J. Joshua and published by IGI Global. This book was released on 2019-11-29 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Book Artificial Intelligence and Its Applications

Download or read book Artificial Intelligence and Its Applications written by Brahim Lejdel and published by Springer Nature. This book was released on 2022-03-11 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the second edition of the international Conference on Artificial Intelligence and its Applications (AIAP'21). This edition aims to bring together leading academic scientists, international researchers, and practitioners to exchange and share their experiences and research results on all aspects of Artificial Intelligence. It also provides an interdisciplinary platform for researchers, practitioners and students to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of Artificial Intelligence. This international conference offers an opportunity to bridge the gap between the Artificial Intelligence research community and people from the industry or working in other research areas including smart cities, big data, cloud computing, social networks, and energy.

Book Machine Learning in the Oil and Gas Industry

Download or read book Machine Learning in the Oil and Gas Industry written by Yogendra Narayan Pandey and published by Apress. This book was released on 2020-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.

Book Data Governance

    Book Details:
  • Author : Dimitrios Sargiotis
  • Publisher : Springer Nature
  • Release :
  • ISBN : 3031672682
  • Pages : 553 pages

Download or read book Data Governance written by Dimitrios Sargiotis and published by Springer Nature. This book was released on with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Machine Learning Research and Application  2013 Edition

Download or read book Advances in Machine Learning Research and Application 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-06-21 with total page 1046 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Artificial Intelligence. The editors have built Advances in Machine Learning Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Machine Learning Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Mathematics for Machine Learning

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Book Environmental Issues of Blasting

Download or read book Environmental Issues of Blasting written by Ramesh M. Bhatawdekar and published by Springer Nature. This book was released on 2022-01-04 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous and up-to-date study of the various AI and machine learning algorithms for resolving environmental challenges associated with blasting. Blasting is a critical activity in any mining or civil engineering project for breaking down hard rock masses. A small amount of explosive energy is only used during blasting to fracture rock in order to achieve the appropriate fragmentation, throw, and development of muck pile. The surplus energy is transformed into unfavourable environmental effects such as back-break, flyrock, air overpressure, and ground vibration. The advancement of artificial intelligence and machine learning techniques has increased the accuracy of predicting these environmental impacts of blasting. This book discusses the effective application of these strategies in forecasting, mitigating, and regulating the aforementioned blasting environmental hazards.

Book Drilling

    Book Details:
  • Author : Ariffin Samsuri
  • Publisher : BoD – Books on Demand
  • Release : 2018-10-31
  • ISBN : 1789843030
  • Pages : 194 pages

Download or read book Drilling written by Ariffin Samsuri and published by BoD – Books on Demand. This book was released on 2018-10-31 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: With regard to depleted oil and gas resources, increasing world energy demands and volatile economic and political world scenarios, oil and gas industry players are working very hard to find ways to cut exploration and production costs to sustain and develop the industry to provide the world with cheap energy without harming the environment. Therefore, this book intends to provide readers with a comprehensive overview of the current state of the art in drilling, such as advanced drilling operations and techniques used by the industry, particularly in floating, underbalanced drilling, smart drilling fluid, intelligent drilling, drilling optimization, and future drilling technology and development.

Book Hydraulic Fracturing in Unconventional Reservoirs

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing

Book Deep Learning Techniques for IoT Security and Privacy

Download or read book Deep Learning Techniques for IoT Security and Privacy written by Mohamed Abdel-Basset and published by Springer Nature. This book was released on 2021-12-05 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Book Machine Learning for Energy Systems

Download or read book Machine Learning for Energy Systems written by Denis Sidorov and published by MDPI. This book was released on 2020-12-08 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with recent advances in and applications of computational intelligence and advanced machine learning methods in power systems, heating and cooling systems, and gas transportation systems. The optimal coordinated dispatch of the multi-energy microgrids with renewable generation and storage control using advanced numerical methods is discussed. Forecasting models are designed for electrical insulator faults, the health of the battery, electrical insulator faults, wind speed and power, PV output power and transformer oil test parameters. The loads balance algorithm for an offshore wind farm is proposed. The information security problems in the energy internet are analyzed and attacked using information transmission contemporary models, based on blockchain technology. This book will be of interest, not only to electrical engineers, but also to applied mathematicians who are looking for novel challenging problems to focus on.

Book Artificial Intelligent Approaches in Petroleum Geosciences

Download or read book Artificial Intelligent Approaches in Petroleum Geosciences written by Constantin Cranganu and published by Springer Nature. This book was released on with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Methods for Petroleum Well Optimization

Download or read book Methods for Petroleum Well Optimization written by Rasool Khosravanian and published by Gulf Professional Publishing. This book was released on 2021-09-22 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drilling and production wells are becoming more digitalized as oil and gas companies continue to implement machine learning andbig data solutions to save money on projects while reducing energy and emissions. Up to now there has not been one cohesiveresource that bridges the gap between theory and application, showing how to go from computer modeling to practical use. Methodsfor Petroleum Well Optimization: Automation and Data Solutions gives today's engineers and researchers real-time data solutionsspecific to drilling and production assets. Structured for training, this reference covers key concepts and detailed approaches frommathematical to real-time data solutions through technological advances. Topics include digital well planning and construction,moving teams into Onshore Collaboration Centers, operations with the best machine learning (ML) and metaheuristic algorithms,complex trajectories for wellbore stability, real-time predictive analytics by data mining, optimum decision-making, and case-basedreasoning. Supported by practical case studies, and with references including links to open-source code and fit-for-use MATLAB, R,Julia, Python and other standard programming languages, Methods for Petroleum Well Optimization delivers a critical training guidefor researchers and oil and gas engineers to take scientifically based approaches to solving real field problems. - Bridges the gap between theory and practice (from models to code) with content from the latest research developments supported by practical case study examples and questions at the end of each chapter - Enables understanding of real-time data solutions and automation methods available specific to drilling and production wells, suchas digital well planning and construction through to automatic systems - Promotes the use of open-source code which will help companies, engineers, and researchers develop their prediction and analysissoftware more quickly; this is especially appropriate in the application of multivariate techniques to the real-world problems of petroleum well optimization

Book Ant Colony Optimization

Download or read book Ant Colony Optimization written by Marco Dorigo and published by MIT Press. This book was released on 2004-06-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.