EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Finite Element Methods   Concepts and Applications in Geomechanics

Download or read book Finite Element Methods Concepts and Applications in Geomechanics written by Debasis Deb and published by PHI Learning Pvt. Ltd.. This book was released on 2010 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Elements in Geomechanics

Download or read book Finite Elements in Geomechanics written by G. Gudehus and published by John Wiley & Sons. This book was released on 1977 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particulate Discrete Element Modelling

Download or read book Particulate Discrete Element Modelling written by Catherine O'Sullivan and published by CRC Press. This book was released on 2011-04-06 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first single work on DEM providing the information to get started with this powerful numerical modelling approach. Provides the basic details of the numerical method and the approaches used to interpret the results of DEM simulations. It will be of use to professionals, researchers and higher level students, with a theoretical overview of DEM as well as practical guidance.Selected Contents: 1.Introduction 2.Use of DEM in Geomechanics 3.Calculation of Contact Forces 4.Particle Motion 5.Particle Types 6.Boundary Conditions 7.Initial Geometry and Specimen Generation 8.Time Integration and Discrete Element Modelling 9.DEM Interpretation: A Continuum Perspective 10.Postprocessing: Graphical Interpretation of DEM Simulations 11.Basic Statisti

Book Boundary Element Method in Geomechanics

Download or read book Boundary Element Method in Geomechanics written by W.S. Venturini and published by Springer. This book was released on 1983-08-01 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical techniques for solving many problems in continuum mechanics have experienced a tremendous growth in the last twenty years due to the development of large high speed computers. In particular, geomechanical stress analysis can now be modelled within a more realistic context. In spite of the fact that many applications in geomechanics are still being carried out applying linear theories, soil and rock materials have been demonstrated experimentally to be physically nonlinear. Soils do not recover their initial state after removal of temporary loads and rock does not deform in proportion to the loads applied. The search for a unified theory to model the real response of these materials is impossible due to the complexities involved in each case. Realistic solutions in geomechanical analysis must be provided by considering that material properties vary from point to point, in addition to other significant features such as non-homogeneous media, in situ stress condition, type of loading, time effects and discontinuities. A possible alternative to tackle such a problem is to inttoduce some simplified assumptions which at least can provide an approximate solution in each case. The validity or accuracy of the final solution obtained is always dependent upon the approach adopted. As a consequence, the choice of a reliable theory for each particular problem is another difficult decision which should be 2 taken by the analyst in geomechanical stress analysis.

Book Element by element Methods in geomechanics

Download or read book Element by element Methods in geomechanics written by Sau Wai Wong and published by . This book was released on 1987 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Analysis in Geotechnical Engineering

Download or read book Finite Element Analysis in Geotechnical Engineering written by David M Potts and published by Thomas Telford. This book was released on 2001 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.

Book Distinct Element Modelling in Geomechanics

Download or read book Distinct Element Modelling in Geomechanics written by K.R. Saxena and published by Routledge. This book was released on 2018-12-20 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear mathematical assumptions for procedures in other branches of engineering have little relevance for geoengineering, which must accommodate non-linear behaviors. Contributors to eight papers apply the breakthrough numerical modeling Distinct Element Method (Cundall, late 1960s). The design philosophy for structures or excavations in geotechnical engineering is different from that followed for fabricated materials like steel and concrete. The designer has little data both with regard to geological weaknesses and strength and deformation characteristics of materials before finalizing the designs. Also these characteristics vary from place to place. In-situ stresses due to gravity and tectonics and transient forces imposed due to rainfall and earthquakes make the matter more complicated. The pore waters carry the load initially before passing it on to the solids. For the analytical procedure, to be realistic, it should account for large displacements and non-linear behaviour including strain-softening. Because of these considerations, the designers have followed procedures based on simplifying assumptions such as linear, small strain, elastoplastic behaviour. Numerical procedures based on such assumptions, though very popular in other branches of engineering, have made little impact in geo-engineering. An attempt has been made in this book to compile the recent use of distinct element codes for solutions of some of the problems in geomechanics — particularly those involving excavations. It is hoped that it will provide an opportunity for the fraternity of geotechnical engineers to appreciate the opening of new frontiers in the use of computers for solving more challenging geotechnical problems.

Book Finite Element Method

Download or read book Finite Element Method written by Debasis Deb and published by PHI Learning Pvt. Ltd.. This book was released on 2006-09 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Boundary Element Method in Geomechanics

Download or read book Boundary Element Method in Geomechanics written by W.S. Venturini and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical techniques for solving many problems in continuum mechanics have experienced a tremendous growth in the last twenty years due to the development of large high speed computers. In particular, geomechanical stress analysis can now be modelled within a more realistic context. In spite of the fact that many applications in geomechanics are still being carried out applying linear theories, soil and rock materials have been demonstrated experimentally to be physically nonlinear. Soils do not recover their initial state after removal of temporary loads and rock does not deform in proportion to the loads applied. The search for a unified theory to model the real response of these materials is impossible due to the complexities involved in each case. Realistic solutions in geomechanical analysis must be provided by considering that material properties vary from point to point, in addition to other significant features such as non-homogeneous media, in situ stress condition, type of loading, time effects and discontinuities. A possible alternative to tackle such a problem is to inttoduce some simplified assumptions which at least can provide an approximate solution in each case. The validity or accuracy of the final solution obtained is always dependent upon the approach adopted. As a consequence, the choice of a reliable theory for each particular problem is another difficult decision which should be 2 taken by the analyst in geomechanical stress analysis.

Book Fundamentals of Discrete Element Methods for Rock Engineering  Theory and Applications

Download or read book Fundamentals of Discrete Element Methods for Rock Engineering Theory and Applications written by Lanru Jing and published by Elsevier. This book was released on 2007-07-18 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some fundamental concepts behind the basic theories and tools of discrete element methods (DEM), its historical development, and its wide scope of applications in geology, geophysics and rock engineering. Unlike almost all books available on the general subject of DEM, this book includes coverage of both explicit and implicit DEM approaches, namely the Distinct Element Methods and Discontinuous Deformation Analysis (DDA) for both rigid and deformable blocks and particle systems, and also the Discrete Fracture Network (DFN) approach for fluid flow and solute transport simulations. The latter is actually also a discrete approach of importance for rock mechanics and rock engineering. In addition, brief introductions to some alternative approaches are also provided, such as percolation theory and Cosserat micromechanics equivalence to particle systems, which often appear hand-in-hand with the DEM in the literature. Fundamentals of the particle mechanics approach using DEM for granular media is also presented. · Presents the fundamental concepts of the discrete models for fractured rocks, including constitutive models of rock fractures and rock masses for stress, deformation and fluid flow · Provides a comprehensive presentation on discrete element methods, including distinct elements, discontinuous deformation analysis, discrete fracture networks, particle mechanics and Cosserat representation of granular media · Features constitutive models of rock fractures and fracture system characterization methods detaiing their significant impacts on the performance and uncertainty of the DEM models

Book Extended Finite Element Method

Download or read book Extended Finite Element Method written by Amir R. Khoei and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples

Book Boundary Element Techniques in Geomechanics

Download or read book Boundary Element Techniques in Geomechanics written by George D. Manolis and published by . This book was released on 1993 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an understanding of the role of Boundary Element Methods (BEM) in the numerical analysis of problems in geomechanics. Topics covered include: computer implementation; wave propagation due to seismicity or to man-related causes; and soil-fluid-structure interaction.

Book Programming the Finite Element Method

Download or read book Programming the Finite Element Method written by I. M. Smith and published by John Wiley & Sons. This book was released on 1982 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Elements in Geotechnical Engineering

Download or read book Finite Elements in Geotechnical Engineering written by David John Naylor and published by . This book was released on 1981 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Notes on Numerical Modeling in Geomechanics

Download or read book Notes on Numerical Modeling in Geomechanics written by William G. Pariseau and published by CRC Press. This book was released on 2022-03-31 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to numerical analysis in geomechanics and is intended for advanced undergraduate and beginning graduate study of the mechanics of porous, jointed rocks and soils. Although familiarity with the concepts of stress, strain and so on is assumed, a review of the fundamentals of solid mechanics including concepts of physical laws, kinematics and material laws is presented in an appendix. Emphasis is on the popular finite element method but brief explanations of the boundary element method, the distinct element method (also known as the discrete element method) and discontinuous deformation analysis are included. Familiarity with a computer programming language such as Fortran, C++ or Python is not required, although programming excerpts in Fortran are presented at the end of some chapters. This work begins with an intuitive approach to interpolation over a triangular element and thus avoids making the simple complex by not doing energy minimization via a calculus of variations approach so often found in reference books on the finite element method. The presentation then proceeds to a principal of virtual work via the well-known divergence theorem to obtain element equilibrium and then global equilibrium, both expressed as stiffness equations relating force to displacement. Solution methods for the finite element approach including elimination and iteration methods are discussed. Hydro-mechanical coupling is described and extension of the finite element method to accommodate fluid flow in porous geological media is made. Example problems illustrate important concepts throughout the text. Additional problems for a 15-week course of study are presented in an appendix; solutions are given in another appendix.

Book Programming the Finite Element Method

Download or read book Programming the Finite Element Method written by I. M. Smith and published by John Wiley & Sons. This book was released on 2005-06-10 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title demonstrates how to develop computer programmes which solve specific engineering problems using the finite element method. It enables students, scientists and engineers to assemble their own computer programmes to produce numerical results to solve these problems. The first three editions of Programming the Finite Element Method established themselves as an authority in this area. This fully revised 4th edition includes completely rewritten programmes with a unique description and list of parallel versions of programmes in Fortran 90. The Fortran programmes and subroutines described in the text will be made available on the Internet via anonymous ftp, further adding to the value of this title.

Book XAFS for Everyone

    Book Details:
  • Author : Scott Calvin
  • Publisher : CRC Press
  • Release : 2013-05-20
  • ISBN : 0415684048
  • Pages : 442 pages

Download or read book XAFS for Everyone written by Scott Calvin and published by CRC Press. This book was released on 2013-05-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: XAFS for Everyone provides a practical, thorough guide to x-ray absorption fine-structure (XAFS) spectroscopy for both novices and seasoned practitioners from a range of disciplines. The text is enhanced with more than 200 figures as well as cartoon characters who offer informative commentary on the different approaches used in XAFS spectroscopy. The book covers sample preparation, data reduction, tips and tricks for data collection, fingerprinting, linear combination analysis, principal component analysis, and modeling using theoretical standards. It describes both near-edge (XANES) and extended (EXAFS) applications in detail. Examples throughout the text are drawn from diverse areas, including materials science, environmental science, structural biology, catalysis, nanoscience, chemistry, art, and archaeology. In addition, five case studies from the literature demonstrate the use of XAFS principles and analysis in practice. The text includes derivations and sample calculations to foster a deeper comprehension of the results. Whether you are encountering this technique for the first time or looking to hone your craft, this innovative and engaging book gives you insight on implementing XAFS spectroscopy and interpreting XAFS experiments and results. It helps you understand real-world trade-offs and the reasons behind common rules of thumb.