Download or read book Electronic and Optical Properties of Conjugated Polymers written by William Barford and published by OUP Oxford. This book was released on 2013-04-04 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conjugated polymers have important technological applications, including solar cells and light emitting devices. They are also active components in many important biological processes. In recent years there have been significant advances in our understanding of these systems, owing to both improved experimental measurements and the development of advanced computational techniques. The aim of this book is to describe and explain the electronic and optical properties of conjugated polymers. It focuses on the three key roles of electron-electron interactions, electron-nuclear coupling, and disorder in determining the character of the electronic states, and it relates these properties to experimental observations in real systems. A number of important optical and electronic processes in conjugated polymers are also described. The second edition has a more extended discussion of excitons in conjugated polymers. There is also a new chapter on the static and dynamical localization of excitons.
Download or read book Electronic Properties of Polymers written by Hans Kuzmany and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Winter School on Electronic Properties of Polymers Orien tation and Dimensionality of Conjugated Systems, held March 9-16, 1991, in Kirchberg, ('lYrol) Austria, was a sequel to three meetings on similar subjects held there. The 1991 winter school was again organized in cooperation with the "Bundesministerium fUr Wissenschaft und Forschung" in Austria, and with the "Bundesministerium fUr Forschung und Technologie" in the Federal Republic of Germany. The basic idea of the meeting was to provide an opportunity for experienced scientists from universities and industry to discuss their most re cent results and for students and young scientists to become familiar with the present status of research and applications in the field. Like the previous winter schools on polymers, this one concentrated on the electronic structure and potential~ for application of polymers with conjugated double bonds. This time, however, special attention was paid to the effects of orientation and dimensionality. Anisotropy of the electric conductivity in stretch-oriented samples and whether the transport mechanisms are one-, two-, or three-dimensional or might even have a "fractal dimensionality" were there fore central topics. The problem of orientation was extended to systems such as Langmuir-Blodgett films and other layered structures. Accordingly, thin films were the focus of most of the application oriented contributions. Whereas in the previous winter schools discussions on applications dealt with "large volume applications" such as electromagnetic shielding and energy storage, this time "molecular materials for electronics" and prospects of "molecular electronics" were at the center of interest.
Download or read book Electronic Properties of Conjugated Polymers III written by Hans Kuzmany and published by . This book was released on 1989 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Conjugated Conducting Polymers written by Helmut Kiess and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.
Download or read book Electronic Properties of Conjugated Polymers written by Hans Kuzmany and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with electrical, electrochemical, structural, magnetic, optical and lattice dynamical properties of conjugated polymers such as polyaniline, polyacetylene, polydiacetylene, polypyrrole, polyparaphenylene and polythiophene. Several new conjugated systems and model polyenes are also considered. Since the previous winter school on this topic held in 1985, the focus of interest in the field has broadened and now covers not only conductivity and relaxation phenomena of polyacetylene but also nonlinear optical properties, highly oriented and single crystal polymers, and electrochemical and opto-electrochemical properties of special materials. Particular attention is paid in this volume to the possible applications of these systems, for example, in electrochemical cells as electrode materials and in nonlinear optics devices, which now appear to be much more realistic than previously. The detailed contributions are complemented by short reviews of thin film polymers (Langmuir-Blodgett layers), filled polymers, ferromagnetic polymers, superconducting low-dimensional systems (including organic superconductors and high-temperature superconductors) and the application of fractal models to polymers.
Download or read book Polymers for Photonics Applications I written by K.-S. Lee and published by Springer. This book was released on 2003-07-03 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two special volumes of Advances in Polymer Science entitled "Polymers for Photonics Applications" provide authoritative and critical reviews of up-to-date research and advances in various fields of photonic polymers as well as their promising applications. Eight articles contributed by internationally recognized scientists are concerned with polymers for second- and third-order nonlinear optics, quadratic parametric interactions in polymer waveguides, electroluminescent polymers for light sources, photoreflective polymers for holographic information storage, and highly efficient two-photon absorbing organics and polymers, including their applications. This review should provide individuals working in the field of photonic polymers with invaluable scientific knowledge on the state of the art while giving directions for future research to those deeply interested.
Download or read book Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications written by Srabanti Ghosh and published by John Wiley & Sons. This book was released on 2021-06-01 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.
Download or read book Organic Electronic Materials written by R. Farchioni and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together selected contributions both on the fundamental information on the physics and chemistry of these materials, new physical ideas and decisive experiments. It constitutes both an insightful treatise and a handy reference for specialists and graduate students working in solid state physics and chemistry, material science and related fields.
Download or read book Conjugated Polymers at Nanoscale written by Karen K. Gleason and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-08-23 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale control of order and orientation is essential for optimizing the performance of conjugated polymers. These semi-crystalline materials enable flexible devices for electronic, optical, electrochemical, and thermoelectric applications and are also of interest for the emerging fields of bioelectronics and spintronics.
Download or read book Physics of Transition Metal Oxides written by Sadamichi Maekawa and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Download or read book Spectroscopy of Mott Insulators and Correlated Metals written by Atsushi Fujimori and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.
Download or read book Statistical Physics I written by Morikazu Toda and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.
Download or read book Excitons in Low Dimensional Semiconductors written by Stephan Glutsch and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
Download or read book Symmetries in Physics written by Wolfgang Ludwig and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetries in Physics presents the fundamental theories of symmetry, together with many examples of applications taken from several different branches of physics. Emphasis is placed on the theory of group representations and on the powerful method of projection operators. The excercises are intended to stimulate readers to apply the techniques demonstrated in the text.
Download or read book Superlattices and Other Heterostructures written by Eougenious L. Ivchenko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Superlattices and Other Heterostructures deals with optical properties of superlattices and quantum-well structures with emphasis on phenomena governed by crystal symmetries. After a brief introduction to group theory and symmetries, methods to calculate spectra of electrons, excitions and phonons in heterostructures are discussed. Further chapters cover absorption and reflection of light under interband transitions, cyclotron and electron spin-resoncance, light scattering by free and bound carriers as well as by optical and acoustic phonons, polarized photoluminescence, optical spin orientation of electrons and excitions, and nonlinear optical and photogalvanic effects.
Download or read book Magnetism in the Solid State written by Peter Mohn and published by Springer Science & Business Media. This book was released on 2006-06-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a phenomenological approach to the field of solid state magnetism. It surveys the various theories and discusses their applicability in different types of materials. The text will be valuable as a text for graduate courses in magnetism and magnetic materials.
Download or read book Optics of Semiconductors and Their Nanostructures written by Heinz Kalt and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the field of semiconductor optics has been pushed to several extremes. The size of semiconductor structures has shrunk to dimensions of a few nanometers, the semiconductor-light interaction is studied on timescales as fast as a few femtoseconds, and transport properties on a length scale far below the wavelength of light have been revealed. These advances were driven by rapid improvements in both semiconductor and optical technologies and were further facilitated by progress in the theoretical description of optical excitations in semiconductors. This book, written by leading experts in the field, provides an up-to-date introduction to the optics of semiconductors and their nanostructures so as to help the reader understand these exciting new developments. It also discusses recently established applications, such as blue-light emitters, as well as the quest for future applications in areas such as spintronics, quantum information processing, and third-generation solar cells.