EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electron Microscopy and Microanalysis of Crystalline Materials

Download or read book Electron Microscopy and Microanalysis of Crystalline Materials written by J. A. Belk and published by . This book was released on 1979 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph I. Goldstein and published by Springer. This book was released on 2017-11-17 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly revised and updated Fourth Edition of a time-honored text provides the reader with a comprehensive introduction to the field of scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) for elemental microanalysis, electron backscatter diffraction analysis (EBSD) for micro-crystallography, and focused ion beams. Students and academic researchers will find the text to be an authoritative and scholarly resource, while SEM operators and a diversity of practitioners — engineers, technicians, physical and biological scientists, clinicians, and technical managers — will find that every chapter has been overhauled to meet the more practical needs of the technologist and working professional. In a break with the past, this Fourth Edition de-emphasizes the design and physical operating basis of the instrumentation, including the electron sources, lenses, detectors, etc. In the modern SEM, many of the low level instrument parameters are now controlled and optimized by the microscope’s software, and user access is restricted. Although the software control system provides efficient and reproducible microscopy and microanalysis, the user must understand the parameter space wherein choices are made to achieve effective and meaningful microscopy, microanalysis, and micro-crystallography. Therefore, special emphasis is placed on beam energy, beam current, electron detector characteristics and controls, and ancillary techniques such as energy dispersive x-ray spectrometry (EDS) and electron backscatter diffraction (EBSD). With 13 years between the publication of the third and fourth editions, new coverage reflects the many improvements in the instrument and analysis techniques. The SEM has evolved into a powerful and versatile characterization platform in which morphology, elemental composition, and crystal structure can be evaluated simultaneously. Extension of the SEM into a "dual beam" platform incorporating both electron and ion columns allows precision modification of the specimen by focused ion beam milling. New coverage in the Fourth Edition includes the increasing use of field emission guns and SEM instruments with high resolution capabilities, variable pressure SEM operation, theory, and measurement of x-rays with high throughput silicon drift detector (SDD-EDS) x-ray spectrometers. In addition to powerful vendor- supplied software to support data collection and processing, the microscopist can access advanced capabilities available in free, open source software platforms, including the National Institutes of Health (NIH) ImageJ-Fiji for image processing and the National Institute of Standards and Technology (NIST) DTSA II for quantitative EDS x-ray microanalysis and spectral simulation, both of which are extensively used in this work. However, the user has a responsibility to bring intellect, curiosity, and a proper skepticism to information on a computer screen and to the entire measurement process. This book helps you to achieve this goal. Realigns the text with the needs of a diverse audience from researchers and graduate students to SEM operators and technical managers Emphasizes practical, hands-on operation of the microscope, particularly user selection of the critical operating parameters to achieve meaningful results Provides step-by-step overviews of SEM, EDS, and EBSD and checklists of critical issues for SEM imaging, EDS x-ray microanalysis, and EBSD crystallographic measurements Makes extensive use of open source software: NIH ImageJ-FIJI for image processing and NIST DTSA II for quantitative EDS x-ray microanalysis and EDS spectral simulation. Includes case studies to illustrate practical problem solving Covers Helium ion scanning microscopy Organized into relatively self-contained modules – no need to "read it all" to understand a topic Includes an online supplement—an extensive "Database of Electron–Solid Interactions"—which can be accessed on SpringerLink, in Chapter 3

Book Electron Microscopy and Microanalysisof Crystalline Materials

Download or read book Electron Microscopy and Microanalysisof Crystalline Materials written by J. A. Belk and published by . This book was released on 1979 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microstructural Characterization of Materials

Download or read book Microstructural Characterization of Materials written by David Brandon and published by John Wiley & Sons. This book was released on 2013-03-21 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Book Electron Microscopy and Strength of Crystals

Download or read book Electron Microscopy and Strength of Crystals written by Gareth Thomas and published by . This book was released on 1963 with total page 1044 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scanning Electron Microscopy  X Ray Microanalysis  and Analytical Electron Microscopy

Download or read book Scanning Electron Microscopy X Ray Microanalysis and Analytical Electron Microscopy written by Charles E. Lyman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last four decades remarkable developments have taken place in instrumentation and techniques for characterizing the microstructure and microcomposition of materials. Some of the most important of these instruments involve the use of electron beams because of the wealth of information that can be obtained from the interaction of electron beams with matter. The principal instruments include the scanning electron microscope, electron probe x-ray microanalyzer, and the analytical transmission electron microscope. The training of students to use these instruments and to apply the new techniques that are possible with them is an important function, which. has been carried out by formal classes in universities and colleges and by special summer courses such as the ones offered for the past 19 years at Lehigh University. Laboratory work, which should be an integral part of such courses, is often hindered by the lack of a suitable laboratory workbook. While laboratory workbooks for transmission electron microscopy have-been in existence for many years, the broad range of topics that must be dealt with in scanning electron microscopy and microanalysis has made it difficult for instructors to devise meaningful experiments. The present workbook provides a series of fundamental experiments to aid in "hands-on" learning of the use of the instrumentation and the techniques. It is written by a group of eminently qualified scientists and educators. The importance of hands-on learning cannot be overemphasized.

Book Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Scanning Electron Microscopy and X Ray Microanalysis written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides students as well as practitioners with a comprehensive introduction to the field of scanning electron microscopy (SEM) and X-ray microanalysis. The authors emphasize the practical aspects of the techniques described. Topics discussed include user-controlled functions of scanning electron microscopes and x-ray spectrometers and the use of x-rays for qualitative and quantitative analysis. Separate chapters cover SEM sample preparation methods for hard materials, polymers, and biological specimens. In addition techniques for the elimination of charging in non-conducting specimens are detailed.

Book X rays  Electrons and Crystalline Materials

Download or read book X rays Electrons and Crystalline Materials written by Terence Frederick James Quinn and published by Butterworth-Heinemann. This book was released on 1970 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Field Emission Scanning Electron Microscopy

Download or read book Field Emission Scanning Electron Microscopy written by Nicolas Brodusch and published by Springer. This book was released on 2017-09-25 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage

Book Advanced Scanning Electron Microscopy and X Ray Microanalysis

Download or read book Advanced Scanning Electron Microscopy and X Ray Microanalysis written by Patrick Echlin and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has its origins in the intensive short courses on scanning elec tron microscopy and x-ray microanalysis which have been taught annually at Lehigh University since 1972. In order to provide a textbook containing the materials presented in the original course, the lecturers collaborated to write the book Practical Scanning Electron Microscopy (PSEM), which was published by Plenum Press in 1975. The course con tinued to evolve and expand in the ensuing years, until the volume of material to be covered necessitated the development of separate intro ductory and advanced courses. In 1981 the lecturers undertook the project of rewriting the original textbook, producing the volume Scan ning Electron Microscopy and X-Ray Microanalysis (SEMXM). This vol ume contained substantial expansions of the treatment of such basic material as electron optics, image formation, energy-dispersive x-ray spectrometry, and qualitative and quantitative analysis. At the same time, a number of chapters, which had been included in the PSEM vol ume, including those on magnetic contrast and electron channeling con trast, had to be dropped for reasons of space. Moreover, these topics had naturally evolved into the basis of the advanced course. In addition, the evolution of the SEM and microanalysis fields had resulted in the devel opment of new topics, such as digital image processing, which by their nature became topics in the advanced course.

Book Microanalysis at Atomic Resolution

Download or read book Microanalysis at Atomic Resolution written by and published by . This book was released on 1995 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors discuss how the dedicated scanning transmission electron microscope can provide a microanalysis of crystalline materials at atomic resolution. The method requires the establishment of incoherent conditions for a reference imaging signal as well as the spectroscopic signal. The image can then be used to focus and locate the probe to atomic precision for microanalysis. The Z-contrast image provides the most convenient incoherent reference image, and X-ray and electron energy loss data may be acquired simultaneously. In zone axis crystals, strong columnar channeling delays the onset of beam broadening for several hundred Angstroms, so that atomic resolution microanalysis may be achieved in materials specimens of significant thickness. This combination of signals provides a powerful means for studying interface structure and bonding, and avoids relying on preconceived model structures.

Book Transmission Electron Microscopy

Download or read book Transmission Electron Microscopy written by David B. Williams and published by Springer Science & Business Media. This book was released on 2009-08-05 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking text has been established as the market leader throughout the world. Profusely illustrated, the book provides the necessary instructions for successful hands-on application of this versatile materials characterization technique.

Book Electron and Ion Microscopy and Microanalysis

Download or read book Electron and Ion Microscopy and Microanalysis written by Lawrence E Murr and published by CRC Press. This book was released on 2018-10-08 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: The publication date of the first edition is not stated, but the new edition is apparently considerably revised and expanded. It was written to serve as a multi-purpose text at the senior or graduate level and as a reference for the practicing scientist or engineer. Readers should have a math backgr

Book Electron Microscopy and Analysis

Download or read book Electron Microscopy and Analysis written by Peter J. Goodhew and published by . This book was released on 1975 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electron Crystallography

    Book Details:
  • Author : Devinder Singh
  • Publisher : BoD – Books on Demand
  • Release : 2020-07-22
  • ISBN : 1838801898
  • Pages : 116 pages

Download or read book Electron Crystallography written by Devinder Singh and published by BoD – Books on Demand. This book was released on 2020-07-22 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the quantitative determination of new structures, micro-/nano-crystalline materials pose significant challenges. The different properties of materials are structure-dependent. Traditionally, X-ray crystallography has been used for the analysis of these materials. Electron diffraction is a technique that complements other techniques; for example, single crystal X-ray diffraction and powder X-ray diffraction for determination of structure. Electron diffraction plays a very important role when crystals are very small using single crystal X-ray diffraction or very complex for structure solution by powder X-ray diffraction. With the introduction of advanced methodologies, important methods for crystal structural analysis in the field of electron crystallography have been discovered, such as rotation electron diffraction (RED) and automated electron diffraction tomography (ADT). In recent years, large numbers of crystal structures have been solved using electron crystallography.

Book Practical Scanning Electron Microscopy

Download or read book Practical Scanning Electron Microscopy written by Joseph Goldstein and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the spring of 1963, a well-known research institute made a market survey to assess how many scanning electron microscopes might be sold in the United States. They predicted that three to five might be sold in the first year a commercial SEM was available, and that ten instruments would saturate the marketplace. In 1964, the Cambridge Instruments Stereoscan was introduced into the United States and, in the following decade, over 1200 scanning electron microscopes were sold in the U. S. alone, representing an investment conservatively estimated at $50,000- $100,000 each. Why were the market surveyers wrongil Perhaps because they asked the wrong persons, such as electron microscopists who were using the highly developed transmission electron microscopes of the day, with resolutions from 5-10 A. These scientists could see little application for a microscope that was useful for looking at surfaces with a resolution of only (then) about 200 A. Since that time, many scientists have learned to appreciate that information content in an image may be of more importance than resolution per se. The SEM, with its large depth of field and easily that often require little or no sample prepara interpreted images of samples tion for viewing, is capable of providing significant information about rough samples at magnifications ranging from 50 X to 100,000 X. This range overlaps considerably with the light microscope at the low end, and with the electron microscope at the high end.