EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electromagnetics and Optics

Download or read book Electromagnetics and Optics written by E. E. Kriezis and published by World Scientific. This book was released on 1992 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book addresses the natural link between electromagnetics and optics. The electromagnetic origin of optical phenomena is sought through a dual approach to optics which is based on the wave equation and ray theory. A review of the underlying principles, as well as mechanisms of wave/ray interactions with matter are presented first. An examination of guided propagation of light through various dielectric waveguides follows. Aspects of resonant light propagation, such as Gaussian beams, resonators and lasers, are treated next. The basic theory of light processing by optical elements is presented in the fourth part which covers Fourier optics, the scalar theory of diffraction and holography. The book further refers to miscellaneous topics, such as optical radiation, remote sensing and nonlinear phenomena.

Book An Introduction to Applied Electromagnetics and Optics

Download or read book An Introduction to Applied Electromagnetics and Optics written by Vladimir V. Mitin and published by CRC Press. This book was released on 2016-11-18 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.

Book Principles of Optics

    Book Details:
  • Author : Max Born
  • Publisher : Elsevier
  • Release : 2013-06-01
  • ISBN : 148310320X
  • Pages : 871 pages

Download or read book Principles of Optics written by Max Born and published by Elsevier. This book was released on 2013-06-01 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell's phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.

Book Electrodynamics and Optics

Download or read book Electrodynamics and Optics written by Wolfgang Demtröder and published by Springer Nature. This book was released on 2019-08-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging text offers an accessible and clear treatment of the fundamentals of electromagnetics and optics, a core part of the standard undergraduate physics curriculum. Starting with static electric and magnetic fields, the book works through electromagnetic oscillations and the formation and propagation of electromagnetic waves, before moving on to geometric and wave optics, optical instrumentation and some discussion of new technologies in optics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of devices. This highly motivating presentation deepens the knowledge in a very accessible way, carefully interweaving theory and practical applications. Students are guided through the material with well-chosen examples and case studies, and helpful chapter summaries are provided together with numerous exercises and detailed solutions, all intended to motivate and develop a well-founded understanding of the subject matter.

Book Electromagnetic Optics of Thin Film Coatings

Download or read book Electromagnetic Optics of Thin Film Coatings written by Claude Amra and published by Cambridge University Press. This book was released on 2021-01-14 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A theoretical, self-contained study of periodic multilayers and how they can be effectively exploited in both traditional and modern applications.

Book Graphene Optics

    Book Details:
  • Author : Ricardo A Depine
  • Publisher : Morgan & Claypool Publishers
  • Release : 2017-01-01
  • ISBN : 1681743108
  • Pages : 183 pages

Download or read book Graphene Optics written by Ricardo A Depine and published by Morgan & Claypool Publishers. This book was released on 2017-01-01 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.

Book Introduction to Complex Mediums for Optics and Electromagnetics

Download or read book Introduction to Complex Mediums for Optics and Electromagnetics written by Werner S. Weiglhofer and published by SPIE Press. This book was released on 2003 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.

Book Transformation Electromagnetics and Metamaterials

Download or read book Transformation Electromagnetics and Metamaterials written by Douglas H. Werner and published by Springer Science & Business Media. This book was released on 2013-07-19 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.

Book Problem Solving Guide for Electromagnetism and Optics

Download or read book Problem Solving Guide for Electromagnetism and Optics written by Meridith Witt and published by . This book was released on 2017-01-01 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains detailed solutions and practice problems for a course in electromagnetism and optics. The emphasis is on thinking and problem solving rather than memorization of rules.

Book Classical Electromagnetic Radiation

Download or read book Classical Electromagnetic Radiation written by Mark A. Heald and published by Courier Corporation. This book was released on 2012-12-19 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessiblemacroscopic view of classical electromagnetics thatemphasizes integrating electromagnetic theory with physicaloptics. The survey follows the historical development ofphysics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism.Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.

Book Electromagnetic Wave Propagation  Radiation  and Scattering

Download or read book Electromagnetic Wave Propagation Radiation and Scattering written by Akira Ishimaru and published by John Wiley & Sons. This book was released on 2017-08-09 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.

Book Surface Electromagnetics

    Book Details:
  • Author : Fan Yang
  • Publisher : Cambridge University Press
  • Release : 2019-06-20
  • ISBN : 1108654207
  • Pages : 489 pages

Download or read book Surface Electromagnetics written by Fan Yang and published by Cambridge University Press. This book was released on 2019-06-20 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.

Book The Classical Electromagnetic Field

Download or read book The Classical Electromagnetic Field written by Leonard Eyges and published by Courier Corporation. This book was released on 2012-06-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent text covers a year's course. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

Book Electromagnetic Theory and Applications for Photonic Crystals

Download or read book Electromagnetic Theory and Applications for Photonic Crystals written by Kiyotoshi Yasumoto and published by CRC Press. This book was released on 2018-10-03 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photonic technology promises much faster computing, massive parallel processing, and an evolutionary step in the digital age. The search continues for devices that will enable this paradigm, and these devices will be based on photonic crystals. Modeling is a key process in developing crystals with the desired characteristics and performance, and Electromagnetic Theory and Applications for Photonic Crystals provides the electromagnetic-theoretical models that can be effectively applied to modeling photonic crystals and related optical devices. The book supplies eight self-contained chapters that detail various analytical, numerical, and computational approaches to the modeling of scattering and guiding problems. For each model, the chapter begins with a brief introduction, detailed formulations of periodic structures and photonic crystals, and practical applications to photonic crystal devices. Expert contributors discuss the scattering matrix method, multipole theory of scattering and propagation, model of layered periodic arrays for photonic crystals, the multiple multipole program, the mode-matching method for periodic metallic structures, the method of lines, the finite-difference frequency-domain technique, and the finite-difference time-domain technique. Based on original research and application efforts, Electromagnetic Theory and Applications for Photonic Crystals supplies a broad array of practical tools for analyzing and designing devices that will form the basis for a new age in computing.

Book Electromagnetic Theory of Gratings

Download or read book Electromagnetic Theory of Gratings written by R. Petit and published by Springer Science & Business Media. This book was released on 2013-03-12 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: When I was a student, in the early fifties, the properties of gratings were generally explained according to the scalar theory of optics. The grating formula (which pre dicts the diffraction angles for a given angle of incidence) was established, exper imentally verified, and intensively used as a source for textbook problems. Indeed those grating properties, we can call optical properties, were taught'in a satisfac tory manner and the students were able to clearly understand the diffraction and dispersion of light by gratings. On the other hand, little was said about the "energy properties", i. e. , about the prediction of efficiencies. Of course, the existence of the blaze effect was pointed out, but very frequently nothing else was taught about the efficiency curves. At most a good student had to know that, for an eche lette grating, the efficiency in a given order can approach unity insofar as the diffracted wave vector can be deduced from the incident one by a specular reflexion on the large facet. Actually this rule of thumb was generally sufficient to make good use of the optical gratings available about thirty years ago. Thanks to the spectacular improvements in grating manufacture after the end of the second world war, it became possible to obtain very good gratings with more and more lines per mm. Nowadays, in gratings used in the visible region, a spacing small er than half a micron is common.

Book Electromagnetic and Photonic Simulation for the Beginner  Finite Difference Frequency Domain in MATLAB

Download or read book Electromagnetic and Photonic Simulation for the Beginner Finite Difference Frequency Domain in MATLAB written by Raymond C. Rumpf and published by Artech House. This book was released on 2022-01-31 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Book Electromagnetics

    Book Details:
  • Author : Steven Ellingson
  • Publisher :
  • Release : 2019-12-13
  • ISBN : 9781949373912
  • Pages : pages

Download or read book Electromagnetics written by Steven Ellingson and published by . This book was released on 2019-12-13 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: