Download or read book Nanomaterials For Energy Conversion And Storage written by Dunwei Wang and published by World Scientific. This book was released on 2017-11-10 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.
Download or read book Chemisorption and Reactivity on Supported Clusters and Thin Films written by R.M. Lambert and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneous catalysis provides the backbone of the world's chemical and oil industries. The innate complexity of practical catalytic systems suggests that useful progress should be achievable by investigating key aspects of catalysis by experimental studies on idealised model systems. Thin films and supported clusters are two promising types of model system that can be used for this purpose, since they mimic important aspects of the properties of practical dispersed catalysts. Similarly, appropriate theoretical studies of chemisorption and surface reaction clusters or extended slab systems can provide valuable information on the factors that underlie bonding and catalytic activity. This volume describes such experimental and theoretical approaches to the surface chemistry and catalytic behaviour of metals, metal oxides and metal/metal oxide systems. An introduction to the principles and main themes of heterogeneous catalysis is followed by detailed accounts of the application of modern experimental and theoretical techniques to fundamental problems. The application of advanced experimental methods is complemented by a full description of theoretical procedures, including Hartree-Fock, density functional and similar techniques. The relative merits of the various approaches are considered and directions for future progress are indicated.
Download or read book Electrochemical Energy written by Pei Kang Shen and published by CRC Press. This book was released on 2018-10-08 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.
Download or read book Electrolytes for Electrochemical Supercapacitors written by Cheng Zhong and published by CRC Press. This book was released on 2016-04-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrolytes for Electrochemical Supercapacitors provides a state-of-the-art overview of the research and development of novel electrolytes and electrolyte configurations and systems to increase the energy density of electrochemical supercapacitors. Comprised of chapters written by leading international scientists active in supercapacitor research
Download or read book Advanced Electrochemical Materials in Energy Conversion and Storage written by Junbo Hou and published by CRC Press. This book was released on 2022-03-30 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field. Features: Emphasizes electrochemical materials applied in PEM fuel cells and water splitting Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries Discusses advanced carbon materials for supercapacitors Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.
Download or read book Electrocatalysis in Fuel Cells written by Minhua Shao and published by Springer Science & Business Media. This book was released on 2013-04-08 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading of fuel cells - and thus their high cost - prevents their commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.
Download or read book Metal Oxide Based Nanostructured Electrocatalysts for Fuel Cells Electrolyzers and Metal Air Batteries written by Teko Napporn and published by Elsevier. This book was released on 2021-01-30 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications
Download or read book Direct Methanol Fuel Cells written by Antonio Salvatore Aricò and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an analysis of materials issues, status of technologies and potential applications of direct methanol fuel cells. The principle of operation of direct methanol fuel cells and the status of knowledge in the basic research areas are presented. The technology of direct methanol fuel cells is discussed in this book with particular regard to fabrication methodologies for the manufacturing of catalysts, electrolytes membrane-electrode assemblies, stack hardware and system design.
Download or read book Nanomaterials for Electrochemical Energy Storage Devices written by Poulomi Roy and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage devices are considered to be an important field of interest for researchers worldwide. Batteries and supercapacitors are therefore extensively studied and progressively evolving. The book not only emphasizes the fundamental theories, electrochemical mechanism and its computational view point, but also discusses recent developments in electrode designing based on nanomaterials, separators, fabrication of advanced devices and their performances.
Download or read book Electrochemical Technologies for Energy Storage and Conversion written by Jiujun Zhang and published by John Wiley & Sons. This book was released on 2012-03-27 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this handbook and ready reference, editors and authors from academia and industry share their in-depth knowledge of known and novel materials, devices and technologies with the reader. The result is a comprehensive overview of electrochemical energy and conversion methods, including batteries, fuel cells, supercapacitors, hydrogen generation and storage as well as solar energy conversion. Each chapter addresses electrochemical processes, materials, components, degradation mechanisms, device assembly and manufacturing, while also discussing the challenges and perspectives for each energy storage device in question. In addition, two introductory chapters acquaint readers with the fundamentals of energy storage and conversion, and with the general engineering aspects of electrochemical devices. With its uniformly structured, self-contained chapters, this is ideal reading for entrants to the field as well as experienced researchers.
Download or read book Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds written by Claude Lamy and published by Academic Press. This book was released on 2019-11-27 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass
Download or read book Electrocatalysts for Low Temperature Fuel Cells written by Thandavarayan Maiyalagan and published by John Wiley & Sons. This book was released on 2017-05-08 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.
Download or read book Layered Materials for Energy Storage and Conversion written by Dongsheng Geng and published by Royal Society of Chemistry. This book was released on 2019-01-22 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The considerable interest in graphene and 2D materials is sparking intense research on layered materials due to their unexpected physical, electronic, chemical, and optical properties. This book will provide a comprehensive overview of the recent and state-of-the-art research progress on layered materials for energy storage and other applications. With a brief introduction to layered materials, the chapters of this book gather various fascinating topics such as electrocatalysis for fuel cells, lithium-ion batteries, sodium-ion batteries, photovoltaic devices, thermoelectric devices, supercapacitors and water splitting. Unique aspects of layered materials in these fields, including novel synthesis and functionalization methods, particular physicochemical properties and consequently enhanced performance are addressed. Challenges and perspectives for layered materials in these fields will also be presented. With contributions from key researchers, Layered Materials for Energy Storage and Conversion will be of interest to students, researchers and engineers worldwide who want a basic overview of the latest progress and future directions.
Download or read book Electrocatalysis Computational Experimental and Industrial Aspects written by Carlos Fernando Zinola and published by CRC Press. This book was released on 2010-03-25 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrocatalysis applications are employed in a large number of industries worldwide, ranging from old technologies such as galvanoplasty to the most up-to-date deployments involving ultracapacitators. Recognizing electrocatalysis as a useful interfacial approach to a dynamic interdisciplinary science, Electrocatalysis: Computational, Experimental,
Download or read book Photo and Electro Catalytic Processes written by Jianmin Ma and published by John Wiley & Sons. This book was released on 2022-01-25 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.
Download or read book Layered Double Hydroxides written by Xue Duan and published by Springer Science & Business Media. This book was released on 2006-01-12 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: D.G. Evans, R.C.T. Slade: Structural Aspects of Layered Double Hydroxides.- J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan: Preparation of Layered Double Hydroxides.- C. Taviot-Gueho, F. Leroux: In Situ Polymerization and Intercalation of Polymers in Layered Double Hydroxides.- G.R. Williams, A.I. Khan, D. O'Hare: Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-Resolved, In-Situ X-Ray Powder Diffraction.- F. Li, X. Duan: Applications of Layered Double Hydroxides
Download or read book Fuel Cell Engines written by Matthew M. Mench and published by John Wiley & Sons. This book was released on 2008-03-07 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making.