EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Einstein diffusion mobility relations in semi conductors

Download or read book Einstein diffusion mobility relations in semi conductors written by Stephen Alexander Hope and published by . This book was released on 1979 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by J.-P. Colinge and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

Book Einstein Relation in Compound Semiconductors and Their Nanostructures

Download or read book Einstein Relation in Compound Semiconductors and Their Nanostructures written by Kamakhya Prasad Ghatak and published by Springer Science & Business Media. This book was released on 2008-11-16 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing only on the Einstein relation in compound semiconductors and their nanostructures, this book deals with open research problems from carbon nanotubes to quantum wire superlattices with different band structures, and other field assisted systems.

Book Einstein s Relation Between Diffusion Constant and Mobility for a Diffusion Model

Download or read book Einstein s Relation Between Diffusion Constant and Mobility for a Diffusion Model written by Hermann Rodenhausen and published by . This book was released on 1985 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics of Semiconductors and Nanostructures

Download or read book Physics of Semiconductors and Nanostructures written by Jyoti Prasad Banerjee and published by CRC Press. This book was released on 2019-06-11 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.

Book Diffusion in Semiconductors

Download or read book Diffusion in Semiconductors written by Boris Iosifovich Boltaks and published by . This book was released on 1963 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Device Physics and Design

Download or read book Semiconductor Device Physics and Design written by Umesh Mishra and published by Springer Science & Business Media. This book was released on 2007-11-06 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.

Book Engineering Physics

    Book Details:
  • Author : Mani Naidu
  • Publisher : Pearson Education India
  • Release : 2013
  • ISBN : 9332514127
  • Pages : 640 pages

Download or read book Engineering Physics written by Mani Naidu and published by Pearson Education India. This book was released on 2013 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering Physics is designed to cater to the needs of first year undergraduate engineering students. Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealing at length with various topics such as crystallography, principles of quantum mechanics, free electron theory of metals, dielectric and magnetic properties, semiconductors, nanotechnology, etc.

Book

    Book Details:
  • Author : Mahmoud A. Melehy
  • Publisher : AuthorHouse
  • Release : 2009-09-01
  • ISBN : 1449020399
  • Pages : 298 pages

Download or read book written by Mahmoud A. Melehy and published by AuthorHouse. This book was released on 2009-09-01 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights of this book were selected for inclusion in the program of the 2005, Paris, "Albert Einstein Century International Conference." The Conference Proceedings was published by the American Institute of Physics. ------------------------------------------------------------------- In 1905, Albert Einstein's theory of Brownian motion made a monumental contribution to thermodynamics. Specifically, the theory accounted for the rate of change of the particle momentum associated with thermal motion to study the diffusion of suspended particles in liquids. In this book, the author shows for the first time that Einstein's procedure is justified, not only for this particular problem, but for thermodynamic systems generally, including those containing surfaces, membranes, junctions phase boundaries and other interfaces The resulting, new thermodynamic theory has unified the theory of semiconductor diodes and solar cells. Theoretical results have accurately corroborated experimental data reported by more than 25 authors over a period exceeding a quarter century. The new general theory has revealed that to simultaneously satisfy the first and second laws of thermodynamics, electric charges have to reside at most interfaces. This novel result is the first thermodynamic confirmation of Newton's speculation that capillarity and other interfacial phenomena involve electric forces. Interfacial electrification has explained numerous phenomena of interdisciplinary interest such as: surface tension, capillarity, drop coalescence, adhesion of light particles to surfaces, the separation of charges upon phase change, fog and cloud suspension, the origin of atmospheric electricity, drop coalescence, and the generation of static electricity, to mention a few examples. The book provides ideas and results that will stimulate theoretical and applied research in a variety of disciplines. The topic coverage is balanced and complete for both researchers, who will find case studies with fundamental importance, and students, who will be introduced to the generalization of Einstein's theory of Brownian motion.

Book Transport of Information Carriers in Semiconductors and Nanodevices

Download or read book Transport of Information Carriers in Semiconductors and Nanodevices written by El-Saba, Muhammad and published by IGI Global. This book was released on 2017-03-31 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.

Book Introductory Transport Theory for Charged Particles in Gases

Download or read book Introductory Transport Theory for Charged Particles in Gases written by Robert Edward Robson and published by World Scientific. This book was released on 2006 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many areas of physics research depend upon a good physical understanding of charged particle transport processes in gases, a statement which is as true now as it was in the early part of the last century, when modern physics was taking shape. Gas lasers, multi-wire drift chambers used in high energy particle detectors, muon-catalysed fusion in hydrogen and its isotopes and low-temperature plasma processing technology are just a few examples of experiments and processes in which electrons, ions or muons play a key role. The macroscopic properties of these non-equilibrium systems can best be found by averaging microscopic collision properties over a velocity distribution function, calculated from solution of Boltzmann's kinetic equation, using recently developed techniques. This is the realm of the modern kinetic theory of gases, and is the theme of this book.

Book Semiconductor Statistics

    Book Details:
  • Author : J. S. Blakemore
  • Publisher : Courier Corporation
  • Release : 2002-01-01
  • ISBN : 0486495027
  • Pages : 404 pages

Download or read book Semiconductor Statistics written by J. S. Blakemore and published by Courier Corporation. This book was released on 2002-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination. 1962 edition.

Book The Physics Behind Semiconductor Technology

Download or read book The Physics Behind Semiconductor Technology written by Albrecht Winnacker and published by Springer Nature. This book was released on 2022-12-04 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches the physics and technology of semiconductors, highlighting the strong interdependence between the engineering principles and underlying physical fundamentals. It focuses on conveying a basic understanding of the physics, materials, and processes involved in semiconductor technology without relying on detailed derivations. The book features separate comments on the key physical principles covered, allowing the reader to quickly grasp the take-home message. Chapter-end questions and answers round out this compact book, making it a helpful and dependable resource for physicists, electrical engineers, and materials scientists working with electronic materials. Aimed at upper-level undergraduate students and written by an author with extensive experience in both industry and academia, this textbook gives physicists the opportunity to learn about the materials and technology behind semiconductors, while providing engineers and materials scientists a deeper understanding of the physics behind the technology.

Book Semiconductor Device Physics and Simulation

Download or read book Semiconductor Device Physics and Simulation written by J.S. Yuan and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Book The Physics of Submicron Semiconductor Devices

Download or read book The Physics of Submicron Semiconductor Devices written by Harold L. Grubin and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES......................................... 223 C. Calandra DEEP LEVELS AT COMPOUND-SEMICONDUCTOR INTERFACES........... 253 W. Monch ENSEMBLE MONTE CARLO TECHNIqUES............................. 289 C. Jacoboni NOISE AND DIFFUSION IN SUBMICRON STRUCTURES................. 323 L. Reggiani SUPERLATTICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 . . . . . . . . . . . . K. Hess SUBMICRON LITHOGRAPHY 373 C. D. W. Wilkinson and S. P. Beaumont QUANTUM EFFECTS IN DEVICE STRUCTURES DUE TO SUBMICRON CONFINEMENT IN ONE DIMENSION.... ....................... 401 B. D. McCombe vii viii CONTENTS PHYSICS OF HETEROSTRUCTURES AND HETEROSTRUCTURE DEVICES..... 445 P. J. Price CORRELATION EFFECTS IN SHORT TIME, NONS TAT I ONARY TRANSPORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 . . . . . . . . . . . . J. J. Niez DEVICE-DEVICE INTERACTIONS............ ...................... 503 D. K. Ferry QUANTUM TRANSPORT AND THE WIGNER FUNCTION................... 521 G. J. Iafrate FAR INFRARED MEASUREMENTS OF VELOCITY OVERSHOOT AND HOT ELECTRON DYNAMICS IN SEMICONDUCTOR DEVICES............. 577 S. J. Allen, Jr.

Book Introduction to Semiconductor Physics and Devices

Download or read book Introduction to Semiconductor Physics and Devices written by Mykhaylo Evstigneev and published by Springer Nature. This book was released on 2022-09-29 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook provides a self-contained one-semester course in semiconductor physics and devices that is ideal preparation for students to enter burgeoning quantum industries. Unlike other textbooks on semiconductor device physics, it provides a brief but comprehensive introduction to quantum physics and statistical physics, with derivations and explanations of the key facts that are suitable for second-year undergraduates, rather than simply postulating the main results. The book is structured into three parts, each of which can be covered in around ten lectures. The first part covers fundamental background material such as quantum and statistical physics, and elements of crystallography and band theory of solids. Since this provides a vital foundation for the rest of the text, concepts are explained and derived in more detail than in comparable texts. For example, the concepts of measurement and collapse of the wave function, which are typically omitted, are presented in this text in language accessible to second-year students. The second part covers semiconductors in and out of equilibrium, and gives details which are not commonly presented, such as a derivation of the density of states using dimensional analysis, and calculation of the concentration of ionized impurities from the grand canonical distribution. Special attention is paid to the solution of Poisson’s equation, a topic that is feared by many undergraduates but is brought back down to earth by techniques and analogies from first-year physics. Finally, in the third part, the material in parts 2 and 3 is applied to describe simple semiconductor devices, including the MOSFET, the Schottky and PN-junction diodes, and optoelectronic devices. With a wide range of exercises, this textbook is readily adoptable for an undergraduate course on semiconductor physics devices, and with its emphasis on consolidating and applying knowledge of fundamental physics, it will leave students in engineering and the physical sciences well prepared for a future where quantum industries proliferate.

Book Springer Handbook of Semiconductor Devices

Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.