EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Efficient Modeling of Soft Error Vulnerability in Microprocessors

Download or read book Efficient Modeling of Soft Error Vulnerability in Microprocessors written by Arun Arvind Nair and published by . This book was released on 2012 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability has emerged as a first class design concern, as a result of an exponential increase in the number of transistors on the chip, and lowering of operating and threshold voltages with each new process generation. Radiation-induced transient faults are a significant source of soft errors in current and future process generations. Techniques to mitigate their effect come at a significant cost of area, power, performance, and design effort. Architectural Vulnerability Factor (AVF) modeling has been proposed to easily estimate the processor's soft error rates, and to enable the designers to make appropriate cost/reliability trade-offs early in the design cycle. Using cycle-accurate microarchitectural or logic gate-level simulations, AVF modeling captures the masking effect of program execution on the visibility of soft errors at the output. AVF modeling is used to identify structures in the processor that have the highest contribution to the overall Soft Error Rate (SER) while running typical workloads, and used to guide the design of SER mitigation mechanisms. The precise mechanisms of interaction between the workload and the microarchitecture that together determine the overall AVF is not well studied in literature, beyond qualitative analyses. Consequently, there is no known methodology for ensuring that the workload suite used for AVF modeling offers sufficient SER coverage. Additionally, owing to the lack of an intuitive model, AVF modeling is reliant on detailed microarchitectural simulations for understanding the impact of scaling processor structures, or design space exploration studies. Microarchitectural simulations are time-consuming, and do not easily provide insight into the mechanisms of interactions between the workload and the microarchitecture to determine AVF, beyond aggregate statistics. These aforementioned challenges are addressed in this dissertation by developing two methodologies. First, beginning with a systematic analysis of the factors affecting the occupancy of corruptible state in a processor, a methodology is developed that generates a synthetic workload for a given microarchitecture such that the SER is maximized. As it is impossible for every bit in the processor to simultaneously contain corruptible state, the worst-case realizable SER while running a workload is less than the sum of their circuit-level fault rates. The knowledge of the worst-case SER enables efficient design trade-offs by allowing the architect to validate the coverage of the workload suite and select an appropriate design point, and to identify structures that may potentially have high contribution to SER. The methodology induces 1.4X higher SER in the core as compared to the highest SER induced by SPEC CPU2006 and MiBench programs. Second, a first-order analytical model is proposed, which is developed from the first principles of out-of-order superscalar execution that models the AVF induced by a workload in microarchitectural structures, using inexpensive profiling. The central component of this model is a methodology to estimate the occupancy of correct-path state in various structures in the core. Owing to its construction, the model provides fundamental insight into the precise mechanism of interaction between the workload and the microarchitecture to determine AVF. The model is used to cheaply perform sizing studies for structures in the core, design space exploration, and workload characterization for AVF. The model is used to quantitatively explain results that may appear counter-intuitive from aggregate performance metrics. The Mean Absolute Error in determining AVF of a 4-wide out-of-order superscalar processor using model is less than 7% for each structure, and the Normalized Mean Square Error for determining overall SER is 9.0%, as compared to cycle-accurate microarchitectural simulation.

Book Soft Error Reliability Using Virtual Platforms

Download or read book Soft Error Reliability Using Virtual Platforms written by Felipe Rocha da Rosa and published by Springer Nature. This book was released on 2020-11-02 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the benefits and drawbacks inherent in the use of virtual platforms (VPs) to perform fast and early soft error assessment of multicore systems. The authors show that VPs provide engineers with appropriate means to investigate new and more efficient fault injection and mitigation techniques. Coverage also includes the use of machine learning techniques (e.g., linear regression) to speed-up the soft error evaluation process by pinpointing parameters (e.g., architectural) with the most substantial impact on the software stack dependability. This book provides valuable information and insight through more than 3 million individual scenarios and 2 million simulation-hours. Further, this book explores machine learning techniques usage to navigate large fault injection datasets.

Book Architecture Design for Soft Errors

Download or read book Architecture Design for Soft Errors written by Shubu Mukherjee and published by Morgan Kaufmann Pub. This book was released on 2008 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques. TABLE OF CONTENTS Chapter 1: Introduction Chapter 2: Device- and Circuit-Level Modeling, Measurement, and Mitigation Chapter 3: Architectural Vulnerability Analysis Chapter 4: Advanced Architectural Vulnerability Analysis Chapter 5: Error Coding Techniques Chapter 6: Fault Detection via Redundant Execution Chapter 7: Hardware Error Recovery Chapter 8: Software Detection and Recovery * Provides the methodologies necessary to quantify the effect of radiation-induced soft errors as well as state-of-the-art techniques to protect against them

Book Soft error Resilient On chip Memory Structures

Download or read book Soft error Resilient On chip Memory Structures written by Shuai Wang and published by . This book was released on 2010 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soft errors induced by energetic particle strikes in on-chip memory structures, such as L1 data/instruction caches and register files, have become an increasing challenge in designing new generation reliable microprocessors. Due to their transient/random nature, soft errors cannot be captured by traditional verification and testing process due to the irrelevancy to the correctness of the logic. This dissertation is thus focusing on the reliability characterization and cost-effective reliable design of on-chip memories against soft errors. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes on cache memories may eventually prove significantly inadequate and ineffective. This work develops new lifetime models for data and tag arrays residing in both the data and instruction caches. These models facilitate the characterization of cache vulnerability of the stored items at various lifetime phases. The design methodology is further exemplified by the proposed reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of these approaches. The tag array demands high reliability against soft errors while the data array is fully protected in on-chip caches, because of its crucial importance to the correctness of cache accesses. Exploiting the address locality of memory accesses, this work proposes a Tag Replication Buffer (TRB) to protect information integrity of the tag array in the data cache with low performance, energy and area overheads. To provide a comprehensive evaluation of the tag array reliability, this work also proposes a refined evaluation metric, detected-without-replica-TVF (DOR-TVF), which combines the TVF and access-with-replica (AWR) analysis. Based on the DOR-TVF analysis, a TRB scheme with early write-back (TRB-EWB) is proposed, which achieves a zero DOR-TVF at a negligible performance overhead. Recent research, as well as the proposed optimization schemes in this cache vulnerability study, have focused on the design of cost-effective reliable data caches in terms of performance, energy, and area overheads based on the assumption of fixed error rates. However, for systems in operating environments that vary with time or location, those schemes will be either insufficient or over-designed for the changing error rates. This work explores the design of a self-adaptive reliable data cache that dynamically adapts its employed reliability schemes to the changing operating environments in order to maintain a target reliability. The experimental evaluation shows that the self-adaptive data cache achieves similar reliability to a cache protected by the most reliable scheme, while simultaneously minimizing the performance and power overheads. Besides the data/instruction caches, protecting the register file and its data buses is crucial to reliable computing in high-performance microprocessors. Since the register file is in the critical path of the processor pipeline, any reliable design that increases either the pressure on the register file or the register file access latency is not desirable. This work proposes to exploit narrow-width register values, which represent the majority of generated values, for making the duplicates within the same register data item. A detailed architectural vulnerability factor (AVF) analysis shows that this in-register duplication (IRD) scheme significantly reduces the AVF in the register file compared to the conventional design. The experimental evaluation also shows that IRD provides superior read-with-duplicate (RWD) and error detection/recovery rates under heavy error injection as compared to previous reliability schemes, while only incurring a small power overhead. By integrating the proposed reliable designs in data/instruction caches and register files, the vulnerability of the entire microprocessor is dramatically reduced. The new lifetime model, the self-adaptive design and the narrow-width value duplication scheme proposed in this work can also provide guidance to architects toward highly efficient reliable system design.

Book Soft Error Modeling and Analysis for Microprocessors

Download or read book Soft Error Modeling and Analysis for Microprocessors written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Embedded Systems

    Book Details:
  • Author : Kiyofumi Tanaka
  • Publisher : BoD – Books on Demand
  • Release : 2012-03-02
  • ISBN : 9535101676
  • Pages : 444 pages

Download or read book Embedded Systems written by Kiyofumi Tanaka and published by BoD – Books on Demand. This book was released on 2012-03-02 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nowadays, embedded systems - the computer systems that are embedded in various kinds of devices and play an important role of specific control functions, have permitted various aspects of industry. Therefore, we can hardly discuss our life and society from now onwards without referring to embedded systems. For wide-ranging embedded systems to continue their growth, a number of high-quality fundamental and applied researches are indispensable. This book contains 19 excellent chapters and addresses a wide spectrum of research topics on embedded systems, including basic researches, theoretical studies, and practical work. Embedded systems can be made only after fusing miscellaneous technologies together. Various technologies condensed in this book will be helpful to researchers and engineers around the world.

Book Dependable Embedded Systems

Download or read book Dependable Embedded Systems written by Jörg Henkel and published by Springer Nature. This book was released on 2020-12-09 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems.

Book Soft Errors in Modern Electronic Systems

Download or read book Soft Errors in Modern Electronic Systems written by Michael Nicolaidis and published by Springer. This book was released on 2010-09-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, soft error oriented test structures, process-level, device-level, cell-level, circuit-level, architectural-level, software level and system level soft error mitigation techniques. The book contains a comprehensive presentation of most recent advances on understanding, qualifying and mitigating the soft error effect in advanced electronic systems, presented by academia and industry experts in reliability, fault tolerance, EDA, processor, SoC and system design, and in particular, experts from industries that have faced the soft error impact in terms of product reliability and related business issues and were in the forefront of the countermeasures taken by these companies at multiple levels in order to mitigate the soft error effects at a cost acceptable for commercial products. In a fast moving field, where the impact on ground level electronics is very recent and its severity is steadily increasing at each new process node, impacting one after another various industry sectors (as an example, the Automotive Electronics Council comes to publish qualification requirements on soft errors), research and technology developments and industrial practices have evolve very fast, outdating the most recent books edited at 2004.

Book VLSI SoC  Research Trends in VLSI and Systems on Chip

Download or read book VLSI SoC Research Trends in VLSI and Systems on Chip written by Giovanni De Micheli and published by Springer. This book was released on 2010-08-23 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.

Book High level Estimation and Exploration of Reliability for Multi Processor System on Chip

Download or read book High level Estimation and Exploration of Reliability for Multi Processor System on Chip written by Zheng Wang and published by Springer. This book was released on 2017-06-23 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a novel framework for accurately modeling the errors in nanoscale CMOS technology and developing a smooth tool flow at high-level design abstractions to estimate and mitigate the effects of errors. The book presents novel techniques for high-level fault simulation and reliability estimation as well as architecture-level and system-level fault tolerant designs. It also presents a survey of state-of-the-art problems and solutions, offering insights into reliability issues in digital design and their cross-layer countermeasures.

Book Cost Effective Soft Error Mitigation in Microprocessors

Download or read book Cost Effective Soft Error Mitigation in Microprocessors written by Nicholas J. Wang and published by ProQuest. This book was released on 2007 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finally, in this work, pains were taken to include as much detail as possible in the processor model and analysis methodology. We conclude with an examination of how making various approximations in the model and analysis methodology affect the experimental results and conclusions of this and other processor reliability studies.

Book Soft Error Mechanisms  Modeling and Mitigation

Download or read book Soft Error Mechanisms Modeling and Mitigation written by Selahattin Sayil and published by Springer. This book was released on 2018-06-15 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption and improve soft error reliability at the same time.

Book Software Implemented Hardware Fault Tolerance

Download or read book Software Implemented Hardware Fault Tolerance written by Olga Goloubeva and published by Springer Science & Business Media. This book was released on 2006-09-19 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theory behind software-implemented hardware fault tolerance, as well as the practical aspects needed to put it to work on real examples. By evaluating accurately the advantages and disadvantages of the already available approaches, the book provides a guide to developers willing to adopt software-implemented hardware fault tolerance in their applications. Moreover, the book identifies open issues for researchers willing to improve the already available techniques.

Book Efficient Techniques for Modeling and Mitigation of Soft Errors in Nanometer scale Static CMOS Logic Circuits

Download or read book Efficient Techniques for Modeling and Mitigation of Soft Errors in Nanometer scale Static CMOS Logic Circuits written by Srivathsan Krishnamohan and published by . This book was released on 2005 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource Constrained IoT Edge Devices

Download or read book Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource Constrained IoT Edge Devices written by Geancarlo Abich and published by Springer Nature. This book was released on 2023-01-01 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Book Terrestrial Radiation Effects in ULSI Devices and Electronic Systems

Download or read book Terrestrial Radiation Effects in ULSI Devices and Electronic Systems written by Eishi H. Ibe and published by John Wiley & Sons. This book was released on 2015-03-02 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. The author covers faults and failures in ULSI devices induced by a wide variety of radiation fields, including electrons, alpha-rays, muons, gamma rays, neutrons and heavy ions. Readers will learn how to make numerical models from physical insights, to determine the kind of mathematical approaches that should be implemented to analyze radiation effects. A wide variety of prediction, detection, characterization and mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them, and explains how electronic systems including servers and routers are shut down due to environmental radiation. Provides an understanding of how electronic systems are shut down due to environmental radiation by constructing physical models and numerical algorithms Covers both terrestrial and avionic-level conditions Logically presented with each chapter explaining the background physics to the topic followed by various modelling techniques, and chapter summary Written by a widely-recognized authority in soft-errors in electronic devices Code samples available for download from the Companion Website This book is targeted at researchers and graduate students in nuclear and space radiation, semiconductor physics and electron devices, as well as other areas of applied physics modelling. Researchers and students interested in how a variety of physical phenomena can be modelled and numerically treated will also find this book to present helpful methods.

Book Soft Error Mitigation Techniques for Future Chip Multiprocessors

Download or read book Soft Error Mitigation Techniques for Future Chip Multiprocessors written by Gaurang R. Upasani and published by . This book was released on 2016 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sustained drive to downsize the transistors has reached a point where device sensitivity against transient faults due to neutron and alpha particle strikes a.k.a soft errors has moved to the forefront of concerns for next-generation designs. Following Moore's law, the exponential growth in the number of transistors per chip has brought tremendous progress in the performance and functionality of processors. However, incorporating billions of transistors into a chip makes it more likely to encounter a soft soft errors. Moreover, aggressive voltage scaling and process variations make the processors even more vulnerable to soft errors. Also, the number of cores on chip is growing exponentially fueling the multicore revolution. With increased core counts and larger memory arrays, the total failure-in-time (FIT) per chip (or package) increases. Our studies concluded that the shrinking technology required to match the power and performance demands for servers and future exa- and tera-scale systems impacts the FIT budget. New soft error mitigation techniques that allow meeting the failure rate target are important to keep harnessing the benefits of Moore's law. Traditionally, reliability research has focused on providing circuit, microarchitecture and architectural solutions, which include device hardening, redundant execution, lock-step, error correcting codes, modular redundancy etc. In general, all these techniques are very effective in handling soft errors but expensive in terms of performance, power, and area overheads. Traditional solutions fail to scale in providing the required degree of reliability with increasing failure rates while maintaining low area, power and performance cost. Moreover, this family of solutions has hit the point of diminishing return, and simply achieving 2X improvement in the soft error rate may be impractical. Instead of relying on some kind of redundancy, a new direction that is growing in interest by the research community is detecting the actual particle strike rather than its consequence. The proposed idea consists of deploying a set of detectors on silicon that would be in charge of perceiving the particle strikes that can potentially create a soft error. Upon detection, a hardware or software mechanism would trigger the appropriate recovery action. This work proposes a lightweight and scalable soft error mitigation solution. As a part of our soft error mitigation technique, we show how to use acoustic wave detectors for detecting and locating particle strikes. We use them to protect both the logic and the memory arrays, acting as unified error detection mechanism. We architect an error containment mechanism and a unique recovery mechanism based on checkpointing that works with acoustic wave detectors to effectively recover from soft errors. Our results show that the proposed mechanism protects the whole processor (logic, flip-flop, latches and memory arrays) incurring minimum overheads.