EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Generalized Method of Moments Estimation

Download or read book Generalized Method of Moments Estimation written by Laszlo Matyas and published by Cambridge University Press. This book was released on 1999-04-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The generalized method of moments (GMM) estimation has emerged as providing a ready to use, flexible tool of application to a large number of econometric and economic models by relying on mild, plausible assumptions. The principal objective of this volume is to offer a complete presentation of the theory of GMM estimation as well as insights into the use of these methods in empirical studies. It is also designed to serve as a unified framework for teaching estimation theory in econometrics. Contributors to the volume include well-known authorities in the field based in North America, the UK/Europe, and Australia. The work is likely to become a standard reference for graduate students and professionals in economics, statistics, financial modeling, and applied mathematics.

Book Handbook of Financial Econometrics

Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections

Book Stochastic Volatility

Download or read book Stochastic Volatility written by Neil Shephard and published by Oxford University Press, USA. This book was released on 2005 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This work brings together some of the main papers that have influenced this field, andshows that the development of this subject has been highly multidisciplinary.

Book Modelling Stock Market Volatility

Download or read book Modelling Stock Market Volatility written by Peter H. Rossi and published by Elsevier. This book was released on 1996-11-19 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This essay collection focuses on the relationship between continuous time models and Autoregressive Conditionally Heteroskedastic (ARCH) models and applications. For the first time, Modelling Stock Market Volatility provides new insights about the links between these two models and new work on practical estimation methods for continuous time models. Featuring the pioneering scholarship of Daniel Nelson, the text presents research about the discrete time model, continuous time limits and optimal filtering of ARCH models, and the specification and estimation of continuous time processes. This work will lead to a rapid growth in their empirical application as they are increasingly subjected to routine specification testing. - Provides for the first time new insights on the links between continuous time and ARCH models - Collects seminal scholarship by some of the most renowned researchers in finance and econometrics - Captures complex arguments underlying the approximation and proper statistical modelling of continuous time volatility dynamics

Book Palgrave Handbook of Econometrics

Download or read book Palgrave Handbook of Econometrics written by Terence C. Mills and published by Springer. This book was released on 2009-06-25 with total page 1406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following theseminal Palgrave Handbook of Econometrics: Volume I , this second volume brings together the finestacademicsworking in econometrics today andexploresapplied econometrics, containing contributions onsubjects includinggrowth/development econometrics and applied econometrics and computing.

Book Generalized Method of Moments

Download or read book Generalized Method of Moments written by Alastair R. Hall and published by Oxford University Press. This book was released on 2005 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Method of Moments (GMM) has become one of the main statistical tools for the analysis of economic and financial data. This book is the first to provide an intuitive introduction to the method combined with a unified treatment of GMM statistical theory and a survey of recentimportant developments in the field. Providing a comprehensive treatment of GMM estimation and inference, it is designed as a resource for both the theory and practice of GMM: it discusses and proves formally all the main statistical results, and illustrates all inference techniques using empiricalexamples in macroeconomics and finance.Building from the instrumental variables estimator in static linear models, it presents the asymptotic statistical theory of GMM in nonlinear dynamic models. Within this framework it covers classical results on estimation and inference techniques, such as the overidentifying restrictions test andtests of structural stability, and reviews the finite sample performance of these inference methods. And it discusses in detail recent developments on covariance matrix estimation, the impact of model misspecification, moment selection, the use of the bootstrap, and weak instrumentasymptotics.

Book Fundamental Statistical Inference

Download or read book Fundamental Statistical Inference written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, discussions, and MATLAB programs for computation. It emphasizes details of the relevance of the material, intuition, and discussions with a view towards very modern statistical inference. In addition to classic subjects associated with mathematical statistics, topics include an intuitive presentation of the (single and double) bootstrap for confidence interval calculations, shrinkage estimation, tail (maximal moment) estimation, and a variety of methods of point estimation besides maximum likelihood, including use of characteristic functions, and indirect inference. Practical examples of all methods are given. Estimation issues associated with the discrete mixtures of normal distribution, and their solutions, are developed in detail. Much emphasis throughout is on non-Gaussian distributions, including details on working with the stable Paretian distribution and fast calculation of the noncentral Student's t. An entire chapter is dedicated to optimization, including development of Hessian-based methods, as well as heuristic/genetic algorithms that do not require continuity, with MATLAB codes provided. The book includes both theory and nontechnical discussions, along with a substantial reference to the literature, with an emphasis on alternative, more modern approaches. The recent literature on the misuse of hypothesis testing and p-values for model selection is discussed, and emphasis is given to alternative model selection methods, though hypothesis testing of distributional assumptions is covered in detail, notably for the normal distribution. Presented in three parts—Essential Concepts in Statistics; Further Fundamental Concepts in Statistics; and Additional Topics—Fundamental Statistical Inference: A Computational Approach offers comprehensive chapters on: Introducing Point and Interval Estimation; Goodness of Fit and Hypothesis Testing; Likelihood; Numerical Optimization; Methods of Point Estimation; Q-Q Plots and Distribution Testing; Unbiased Point Estimation and Bias Reduction; Analytic Interval Estimation; Inference in a Heavy-Tailed Context; The Method of Indirect Inference; and, as an appendix, A Review of Fundamental Concepts in Probability Theory, the latter to keep the book self-contained, and giving material on some advanced subjects such as saddlepoint approximations, expected shortfall in finance, calculation with the stable Paretian distribution, and convergence theorems and proofs.

Book Econometric Modelling with Time Series

Download or read book Econometric Modelling with Time Series written by Vance Martin and published by Cambridge University Press. This book was released on 2013 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.

Book Empirical Dynamic Asset Pricing

Download or read book Empirical Dynamic Asset Pricing written by Kenneth J. Singleton and published by Princeton University Press. This book was released on 2009-12-13 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the leading experts in the field, this book focuses on the interplay between model specification, data collection, and econometric testing of dynamic asset pricing models. The first several chapters provide an in-depth treatment of the econometric methods used in analyzing financial time-series models. The remainder explores the goodness-of-fit of preference-based and no-arbitrage models of equity returns and the term structure of interest rates; equity and fixed-income derivatives prices; and the prices of defaultable securities. Singleton addresses the restrictions on the joint distributions of asset returns and other economic variables implied by dynamic asset pricing models, as well as the interplay between model formulation and the choice of econometric estimation strategy. For each pricing problem, he provides a comprehensive overview of the empirical evidence on goodness-of-fit, with tables and graphs that facilitate critical assessment of the current state of the relevant literatures. As an added feature, Singleton includes throughout the book interesting tidbits of new research. These range from empirical results (not reported elsewhere, or updated from Singleton's previous papers) to new observations about model specification and new econometric methods for testing models. Clear and comprehensive, the book will appeal to researchers at financial institutions as well as advanced students of economics and finance, mathematics, and science.

Book Financial Econometrics

Download or read book Financial Econometrics written by Christian Gourieroux and published by Princeton University Press. This book was released on 2022-12-13 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial econometrics is a great success story in economics. Econometrics uses data and statistical inference methods, together with structural and descriptive modeling, to address rigorous economic problems. Its development within the world of finance is quite recent and has been paralleled by a fast expansion of financial markets and an increasing variety and complexity of financial products. This has fueled the demand for people with advanced econometrics skills. For professionals and advanced graduate students pursuing greater expertise in econometric modeling, this is a superb guide to the field's frontier. With the goal of providing information that is absolutely up-to-date—essential in today's rapidly evolving financial environment—Gourieroux and Jasiak focus on methods related to foregoing research and those modeling techniques that seem relevant to future advances. They present a balanced synthesis of financial theory and statistical methodology. Recognizing that any model is necessarily a simplified image of reality and that econometric methods must be adapted and applied on a case-by-case basis, the authors employ a wide variety of data sampled at frequencies ranging from intraday to monthly. These data comprise time series representing both the European and North American markets for stocks, bonds, and foreign currencies. Practitioners are encouraged to keep a critical eye and are armed with graphical diagnostics to eradicate misspecification errors. This authoritative, state-of-the-art reference text is ideal for upper-level graduate students, researchers, and professionals seeking to update their skills and gain greater facility in using econometric models. All will benefit from the emphasis on practical aspects of financial modeling and statistical inference. Doctoral candidates will appreciate the inclusion of detailed mathematical derivations of the deeper results as well as the more advanced problems concerning high-frequency data and risk control. By establishing a link between practical questions and the answers provided by financial and statistical theory, the book also addresses the needs of applied researchers employed by financial institutions.

Book Nonlinear Time Series

Download or read book Nonlinear Time Series written by Jiti Gao and published by CRC Press. This book was released on 2007-03-22 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully

Book Modeling Financial Time Series with S PLUS

Download or read book Modeling Financial Time Series with S PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.

Book Interest Rate Modelling

Download or read book Interest Rate Modelling written by Jessica James and published by John Wiley & Sons. This book was released on 2000-06-08 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: Back Cover ( this section should include endorsements also) As interest rate markets continue to innovate and expand it is becoming increasingly important to remain up-to-date with the latest practical and theoretical developments. This book covers the latest developments in full, with descriptions and implementation techniques for all the major classes of interest rate models - both those actively used in practice as well as theoretical models still 'waiting in the wings'. Interest rate models, implementation methods and estimation issues are discussed at length by the authors as are important new developments such as kernel estimation techniques, economic based models, implied pricing methods and models on manifolds. Providing balanced coverage of both the practical use of models and the theory that underlies them, Interest Rate Modelling adopts an implementation orientation throughout making it an ideal resource for both practitioners and researchers. Back Flap Jessica James Jessica James is Head of Research for Bank One's Strategic Risk Management group, based in the UK. Jessica started life as a physicist at Manchester University and completed her D Phil in Theoretical Atomic and Nuclear Physics at Christ Church, Oxford, under Professor Sandars. After a year as a college lecturer at Trinity, Oxford, she began work at the First National Bank of Chicago, now Bank One, where she still works. She is well known as a speaker on the conference circuit, lecturing on a variety of topics such as VaR, capital allocation, credit derivatives and interest rate modelling, and has published articles on various aspects of financial modelling. Nick Webber Nick Webber is a lecturer in Finance at Warwick Business School. Prior to his academic career, Nick had extensive experience in the industrial and commercial world in operational research and computing. After obtaining a PhD in Theoretical Physics from Imperial College he began research into financial options. His main area of research centres on interest rate modelling and computational finance. He has taught practitioner and academic courses for many years, chiefly on options and interest rates. Front Flap Interest Rate Modelling provides a comprehensive resource on all the main aspects of valuing and hedging interest rate products. A series of introductory chapters reviews the theoretical background, pointing out the problems in using naïve valuation and implementation techniques. There follows a full analysis of interest rate models including major categories, such as Affine, HJM and Market models, and in addition, lesser well known types that include Consol, Random field and Jump-augmented Models. Implementation methods are discussed in depth including the latest developments in the use of finite difference, Lattice and Monte Carlo methods and their particular application to the valuation of interest rate derivatives. Containing previously unpublished material, Interest Rate Modelling is a key reference work both for practitioners developing and implementing models for real and for academics teaching and researching in the field.

Book Handbook of Fixed Income Securities

Download or read book Handbook of Fixed Income Securities written by Pietro Veronesi and published by John Wiley & Sons. This book was released on 2016-03-23 with total page 1036 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the current theories and methodologies intrinsic to fixed-income securities Written by well-known experts from a cross section of academia and finance, Handbook of Fixed-Income Securities features a compilation of the most up-to-date fixed-income securities techniques and methods. The book presents crucial topics of fixed income in an accessible and logical format. Emphasizing empirical research and real-life applications, the book explores a wide range of topics from the risk and return of fixed-income investments, to the impact of monetary policy on interest rates, to the post-crisis new regulatory landscape. Well organized to cover critical topics in fixed income, Handbook of Fixed-Income Securities is divided into eight main sections that feature: • An introduction to fixed-income markets such as Treasury bonds, inflation-protected securities, money markets, mortgage-backed securities, and the basic analytics that characterize them • Monetary policy and fixed-income markets, which highlight the recent empirical evidence on the central banks’ influence on interest rates, including the recent quantitative easing experiments • Interest rate risk measurement and management with a special focus on the most recent techniques and methodologies for asset-liability management under regulatory constraints • The predictability of bond returns with a critical discussion of the empirical evidence on time-varying bond risk premia, both in the United States and abroad, and their sources, such as liquidity and volatility • Advanced topics, with a focus on the most recent research on term structure models and econometrics, the dynamics of bond illiquidity, and the puzzling dynamics of stocks and bonds • Derivatives markets, including a detailed discussion of the new regulatory landscape after the financial crisis and an introduction to no-arbitrage derivatives pricing • Further topics on derivatives pricing that cover modern valuation techniques, such as Monte Carlo simulations, volatility surfaces, and no-arbitrage pricing with regulatory constraints • Corporate and sovereign bonds with a detailed discussion of the tools required to analyze default risk, the relevant empirical evidence, and a special focus on the recent sovereign crises A complete reference for practitioners in the fields of finance, business, applied statistics, econometrics, and engineering, Handbook of Fixed-Income Securities is also a useful supplementary textbook for graduate and MBA-level courses on fixed-income securities, risk management, volatility, bonds, derivatives, and financial markets. Pietro Veronesi, PhD, is Roman Family Professor of Finance at the University of Chicago Booth School of Business, where he teaches Masters and PhD-level courses in fixed income, risk management, and asset pricing. Published in leading academic journals and honored by numerous awards, his research focuses on stock and bond valuation, return predictability, bubbles and crashes, and the relation between asset prices and government policies.

Book Nonparametric Econometric Methods

Download or read book Nonparametric Econometric Methods written by Qi Li and published by Emerald Group Publishing. This book was released on 2009-12-04 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains a selection of papers presented initially at the 7th Annual Advances in Econometrics Conference held on the LSU campus in Baton Rouge, Louisiana during November 14-16, 2008. This work is suitable for those who wish to familiarize themselves with nonparametric methodology.

Book Theory and Applications of Time Series Analysis

Download or read book Theory and Applications of Time Series Analysis written by Olga Valenzuela and published by Springer Nature. This book was released on 2020-11-20 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.