Download or read book Sufficient Dimension Reduction written by Bing Li and published by CRC Press. This book was released on 2018-04-27 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.
Download or read book Sufficient Dimension Reduction written by Bing Li and published by CRC Press. This book was released on 2018-04-27 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field. Features Provides comprehensive coverage of this emerging research field. Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion. Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data. Includes a set of computer codes written in R that are easily implemented by the readers. Uses real data sets available online to illustrate the usage and power of the described methods. Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones. The author Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.
Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Download or read book An Introduction to Envelopes written by R. Dennis Cook and published by John Wiley & Sons. This book was released on 2018-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading expert in the field, this text reviews the major new developments in envelope models and methods An Introduction to Envelopes provides an overview of the theory and methods of envelopes, a class of procedures for increasing efficiency in multivariate analyses without altering traditional objectives. The author offers a balance between foundations and methodology by integrating illustrative examples that show how envelopes can be used in practice. He discusses how to use envelopes to target selected coefficients and explores predictor envelopes and their connection with partial least squares regression. The book reveals the potential for envelope methodology to improve estimation of a multivariate mean. The text also includes information on how envelopes can be used in generalized linear models, regressions with a matrix-valued response, and reviews work on sparse and Bayesian response envelopes. In addition, the text explores relationships between envelopes and other dimension reduction methods, including canonical correlations, reduced-rank regression, supervised singular value decomposition, sufficient dimension reduction, principal components, and principal fitted components. This important resource: • Offers a text written by the leading expert in this field • Describes groundbreaking work that puts the focus on this burgeoning area of study • Covers the important new developments in the field and highlights the most important directions • Discusses the underlying mathematics and linear algebra • Includes an online companion site with both R and Matlab support Written for researchers and graduate students in multivariate analysis and dimension reduction, as well as practitioners interested in statistical methodology, An Introduction to Envelopes offers the first book on the theory and methods of envelopes.
Download or read book Regression Graphics written by R. Dennis Cook and published by John Wiley & Sons. This book was released on 1998-09-30 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zur graphischen Präsentation von Regressionsdaten gibt es seit dem Vormarsch der Computertechnik vielfältige neue Möglichkeiten, die über die klassischen Ansätze hinausgehen. Der Autor betritt mit seinen Ideen häufig Neuland; er illustriert sie mit zahlreichen Beispielen, Diagrammen und Abbildungen (die entsprechenden 3D- und Farbversionen sind über Internet abrufbar). (11/98)
Download or read book Proceedings of the Second Seattle Symposium in Biostatistics written by Danyu Lin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers presented at the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data. The symposium was held in 2000 to celebrate the 30th anniversary of the University of Washington School of Public Health and Community Medicine. It featured keynote lectures by Norman Breslow, David Cox and Ross Prentice and 16 invited presentations by other prominent researchers. The papers contained in this volume encompass recent methodological advances in several important areas, such as longitudinal data, multivariate failure time data and genetic data, as well as innovative applications of the existing theory and methods. This volume is a valuable reference for researchers and practitioners in the field of correlated data analysis.
Download or read book Dimension Reduction written by Christopher J. C. Burges and published by Now Publishers Inc. This book was released on 2010 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: We give a tutorial overview of several foundational methods for dimension reduction. We divide the methods into projective methods and methods that model the manifold on which the data lies. For projective methods, we review projection pursuit, principal component analysis (PCA), kernel PCA, probabilistic PCA, canonical correlation analysis (CCA), kernel CCA, Fisher discriminant analysis, oriented PCA, and several techniques for sufficient dimension reduction. For the manifold methods, we review multidimensional scaling (MDS), landmark MDS, Isomap, locally linear embedding, Laplacian eigenmaps, and spectral clustering. Although the review focuses on foundations, we also provide pointers to some more modern techniques. We also describe the correlation dimension as one method for estimating the intrinsic dimension, and we point out that the notion of dimension can be a scale-dependent quantity. The Nystr m method, which links several of the manifold algorithms, is also reviewed. We use a publicly available dataset to illustrate some of the methods. The goal is to provide a self-contained overview of key concepts underlying many of these algorithms, and to give pointers for further reading.
Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Download or read book Introduction to Small Area Estimation Techniques written by Asian Development Bank and published by Asian Development Bank. This book was released on 2020-05-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.
Download or read book Density Ratio Estimation in Machine Learning written by Masashi Sugiyama and published by Cambridge University Press. This book was released on 2012-02-20 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.
Download or read book Handbook of Big Data Analytics written by Wolfgang Karl Härdle and published by Springer. This book was released on 2018-07-20 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. To do so, it covers statistical methods for high-dimensional problems, algorithmic designs, computation tools, analysis flows and the software-hardware co-designs that are needed to support insightful discoveries from big data. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics. Readers should have a solid background in statistics and computer science.
Download or read book Model Reduction Methods for Vector Autoregressive Processes written by Ralf Brüggemann and published by Springer Science & Business Media. This book was released on 2012-09-25 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. 1 Objective of the Study Vector autoregressive (VAR) models have become one of the dominant research tools in the analysis of macroeconomic time series during the last two decades. The great success of this modeling class started with Sims' (1980) critique of the traditional simultaneous equation models (SEM). Sims criticized the use of 'too many incredible restrictions' based on 'supposed a priori knowledge' in large scale macroeconometric models which were popular at that time. Therefore, he advo cated largely unrestricted reduced form multivariate time series models, unrestricted VAR models in particular. Ever since his influential paper these models have been employed extensively to characterize the underlying dynamics in systems of time series. In particular, tools to summarize the dynamic interaction between the system variables, such as impulse response analysis or forecast error variance decompo sitions, have been developed over the years. The econometrics of VAR models and related quantities is now well established and has found its way into various textbooks including inter alia Llitkepohl (1991), Hamilton (1994), Enders (1995), Hendry (1995) and Greene (2002). The unrestricted VAR model provides a general and very flexible framework that proved to be useful to summarize the data characteristics of economic time series. Unfortunately, the flexibility of these models causes severe problems: In an unrestricted VAR model, each variable is expressed as a linear function of lagged values of itself and all other variables in the system.
Download or read book Developing a Protocol for Observational Comparative Effectiveness Research A User s Guide written by Agency for Health Care Research and Quality (U.S.) and published by Government Printing Office. This book was released on 2013-02-21 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Wireless Communications 3rd Edition written by Andreas F. Molisch and published by John Wiley & Sons. This book was released on 2022-12-06 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Wireless communications is one of the most important modern technologies and is interwoven with all aspects of our daily lives. When we wake up, we check social media, email, and news on our smartphones. Before getting up, we adjust the room temperature through a Bluetooth-connected thermostat. After we leave the house and activate the Wi-Fi security cameras, we order a rideshare on a phone app that recognizes our location and are driven to a factory where manufacturing robots are connected and controlled via 5G. And that is only the start of the day.... It is thus no wonder that wireless infrastructure, user devices, and networks are among the largest and most critical industries in most countries. As the demands for wireless services constantly increase, so are the requirements for new products, and for engineers that can develop these products and bring them to market. Such engineers need a deep understanding of both the fundamentals that govern the behavior of wireless systems, the current standardized systems implementations, and more recent research developments that will influence the next generation of products. The goal of this book is to help students, researchers, and practicing engineers to acquire, refresh, or update this knowledge. It is designed to lead them from the fundamental principles and building blocks, such as digital modulation, fading, and reuse of spectrum, to more advanced technologies that underly modern wireless systems, such as multicarrier and multiantenna transmission, to a description of the standardized systems dominating 5G cellular, Wi-Fi, and short-range communications, to the cutting-edge research that will form the basis for beyond-5G systems. In brief, the book leads the reader from the fundamentals to beyond 5G"--
Download or read book Static Analysis written by Agostino Cortesi and published by Springer Science & Business Media. This book was released on 1999-09-08 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Static analysis is increasingly recognized as a fundamental reasearch area aimed at studying and developing tools for high performance implementations and v- i cation systems for all programming language paradigms. The last two decades have witnessed substantial developments in this eld, ranging from theoretical frameworks to design, implementation, and application of analyzers in optim- ing compilers. Since 1994, SAS has been the annual conference and forum for researchers in all aspects of static analysis. This volume contains the proceedings of the 6th International Symposium on Static Analysis (SAS’99) which was held in Venice, Italy, on 22{24 September 1999. The previous SAS conferences were held in Namur (Belgium), Glasgow (UK), Aachen (Germany), Paris (France), and Pisa (Italy). The program committee selected 18 papers out of 42 submissions on the basis of at least three reviews. The resulting volume o ers to the reader a complete landscape of the research in this area. The papers contribute to the following topics: foundations of static analysis, abstract domain design, and applications of static analysis to di erent programming paradigms (concurrent, synchronous, imperative, object oriented, logical, and functional). In particular, several papers use static analysis for obtaining state space reduction in concurrent systems. New application elds are also addressed, such as the problems of security and secrecy.