EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atlas of Point Contact Spectra of Electron Phonon Interactions in Metals

Download or read book Atlas of Point Contact Spectra of Electron Phonon Interactions in Metals written by A.V. Khotkevich and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in contacts. Until recently it was thought that the electrical conductivity of contacts with direct conductance (without tunneling or semiconducting barriers) obeyed Ohm's law. Nonlinearities of the current-voltage characteristics were explained by joule heating of the metal in the region of the contact. However, studies of the current-voltage characteristics of metallic point contacts at low (liquid helium) temperatures [142] showed that heating effects were negligible in many cases and the nonlinear characteristics under these conditions were observed to take the form of the energy dependent probability of inelastic electron scattering, induced by various mechanisms.

Book ELECTRON PHONON INTERACTION AND ITS EFFECTS IN HEAVY FERMION SYSTEMS

Download or read book ELECTRON PHONON INTERACTION AND ITS EFFECTS IN HEAVY FERMION SYSTEMS written by Dr. Jitendra Sahoo and published by Newredmars Education Pvt Ltd. This book was released on 2022-06-25 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: The story of heavy fermions (HF) begun with the discovery of the low temperature behaviour of CeAl3 by Andres et al. in the year 1975 took the momentum after the discovery of superconductivity in CeCu2Si2 by Steglich et al. in the year 1979 . Though HF behaviour is common in the rare-earth elements like Ce, Yb and actinides like U, it is also found to exist in some of the praseodymium (Pr), samarium (Sm) , plutonium (Pu) and more recently in neptunium (Np) systems. These compounds are characterized by the presence of partially filled f-electron bands. At high temperatures, these magnetic moments manifest themselves as a weakly interacting set of local moments of the f electrons with Curie-Weiss susceptibility that coexists with light s or d conduction electrons. But at low temperature, these f-electrons hybridize with conduction electrons near Fermi level via Kondo spin fluctuation which happens through constant exchange spin-flip transition of f-electrons and band electrons in the vicinity of Fermi level. This process leads to a strong mixing of Fermi electrons with the localized f-electrons which is manifested in a renormalization of the Fermi surface and a drastic enhancement of the effective mass of the electrons at Fermi level. Further, in HF systems, electron-phonon interaction (EPI) contributes a lot in manifestation of some of the anomalous behaviour relating to elastic constant, ultrasonic attenuation & sound velocity, anisotropic Fermi surface, Kondo volume collapse etc. In this PhD thesis book in title “Electron phonon interaction and its effect in heavy fermion (HF) systems” the author tries to put some light into the behavoiour of Electron-phonon interaction in describing some of the properties of HF systems at low temperatures. In this 1 st edition, the book has been presented in multicolour edition with profuse colour illustrations so as to increase its clarity, understand ability and legibility, especially of the figures depicted to explain the low temperature behaviour of HF systems. It is hoped that the present book will serve its purpose in attracting young researchers to the field of HF systems. It is my foremost duty to express my deep sense of gratitute to my supervisor Dr. Pratibindhya Nayak , Professor Emeritus, School of Physics, Sambalpur University, Odisha, for his able guidance at every stage of this work.. His innovative methods and inspirational guidance have largely contributed to the conceptualization of the form and content of this book. I am indebted to my family members for their constant support. I am sincerely thankful to the publisher, Newredmars Education to bring my works into light in form of a book Healthy criticism and suggestions for further improvement of the book are solicited.

Book Cooperative Phenomena

    Book Details:
  • Author : H. Haken
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642860036
  • Pages : 472 pages

Download or read book Cooperative Phenomena written by H. Haken and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of cooperative phenomena is one of the dominant features of contem porary physics. Outside physics it has grown to a huge field of interdisciplinary investigation, involving all the natural sciences from physics via biology to socio logy. Yet, during the first few decades following the advent of quantum theory, the pursuit of the single particle or the single atom, as the case may be, has been so fascinating that only a small number of physicists have stressed the importance of collective behaviour. One outstanding personality among these few is Professor HERBERT FROHLICH. He has made an enormous contribution to the modern concept of cooperativity and has stimulated a whole generation of physicists. Therefore, it seemed to the editors very appropriate to dedicate a volume on "cooperative phenomena" to him on the occasion of his official retirement from his university duties. Nevertheless, in the course of carrying out this project, the editors have been somewhat amazed to find that they have covered the essentials of contemporary physics and its im pact on other scientific disciplines. It thus becomes clear how much HERBERT FROHLICH has inspired research workers and has acted as a stimulating discussion partner for others. FROHLICH is one of those exceptional scientists who have wor ked in quite different fields and given them an enormous impetus. Unfortunately, the number of scientists of such distinctive personality has been decreasing in our century.

Book Electrons and Phonons

    Book Details:
  • Author : J.M. Ziman
  • Publisher : Oxford University Press
  • Release : 2001-02
  • ISBN : 9780198507796
  • Pages : 572 pages

Download or read book Electrons and Phonons written by J.M. Ziman and published by Oxford University Press. This book was released on 2001-02 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a classic text of its time in condensed matter physics.

Book The Electron phonon Interaction in Metals

Download or read book The Electron phonon Interaction in Metals written by Göran Grimvall and published by North Holland. This book was released on 1981 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermophysical Properties of Materials

Download or read book Thermophysical Properties of Materials written by G. Grimvall and published by Elsevier. This book was released on 1999-09-22 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a thoroughly revised version of the original book published in 1986. About half of the contents of the previous version remain essentially unchanged, and one quarter has been rewritten and updated. The rest consists of completely new and extended material. Recent research has focussed on new materials made through "molecular engineering", and computational materials science through ab initio electron structure calculations. Another trend is the ever growing interdisciplinary aspect of both basic and applied materials science. There is an obvious need for reviews that link well established results to the modern approaches. One purpose of this book is to provide such an overview in a specific field of materials science, namely thermophysical phenomena that are intimately connected with the lattice vibrations of solids. This includes, e.g., elastic properties and electrical and thermal transport. Furthermore, this book attempts to present the results in such a form that the reader can clearly see their domain of applicability, for instance if and how they depend on crystal structure, defects, applied pressure, crystal anisotropy etc. The level and presentation is such that the results can be immediately used in research. Graduate students in condensed matter physics, metallurgy, inorganic chemistry or geophysical materials will benefit from this book as will theoretical physicists and scientists in industrial research laboratories.

Book Introduction to the Electron Theory of Metals

Download or read book Introduction to the Electron Theory of Metals written by Uichiro Mizutani and published by Cambridge University Press. This book was released on 2001-06-14 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.

Book Electron phonon Interaction And Lattice Dynamics In High Tc Superconductors

Download or read book Electron phonon Interaction And Lattice Dynamics In High Tc Superconductors written by Han Zhang and published by World Scientific. This book was released on 2020-02-13 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the mechanism of the high-temperature superconductors has been a very important topic in condensed matter physics. Researchers have been trying to explain the role of electron-phonon interaction (EPI) in cuprates. Some important properties of the cuprates could not be explained by conventional BCS theory. This book contains the experimental and theoretical studies on the EPI. The experimental part covers the results of angle-resolved photoemission spectroscopy (ARPES), isotopic effect, elastic neutron scattering study of electron-phonon, lattice role and so on. The theoretical part covers the electron-phonon, polaron and bipolaron, effect of lattice, fine structure in the tunnelling spectra of electron-doped cuprates, identification of the bulk pairing symmetry in high-temperature superconductors.Students and researchers interested in high-temperature superconductors, especially the EPI in cuprates will find this title very useful.

Book Carrier Scattering in Metals and Semiconductors

Download or read book Carrier Scattering in Metals and Semiconductors written by V.F. Gantmakher and published by Elsevier. This book was released on 2012-12-02 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include: - electronic transport theory based on the test-particle and correlation-function concepts; - scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature; - two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.

Book Condensed Matter Physics

    Book Details:
  • Author : Michael P. Marder
  • Publisher : John Wiley & Sons
  • Release : 2010-11-17
  • ISBN : 0470949945
  • Pages : 985 pages

Download or read book Condensed Matter Physics written by Michael P. Marder and published by John Wiley & Sons. This book was released on 2010-11-17 with total page 985 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now updated—the leading single-volume introduction to solid state and soft condensed matter physics This Second Edition of the unified treatment of condensed matter physics keeps the best of the first, providing a basic foundation in the subject while addressing many recent discoveries. Comprehensive and authoritative, it consolidates the critical advances of the past fifty years, bringing together an exciting collection of new and classic topics, dozens of new figures, and new experimental data. This updated edition offers a thorough treatment of such basic topics as band theory, transport theory, and semiconductor physics, as well as more modern areas such as quasicrystals, dynamics of phase separation, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids. In addition to careful study of electron dynamics, electronics, and superconductivity, there is much material drawn from soft matter physics, including liquid crystals, polymers, and fluid dynamics. Provides frequent comparison of theory and experiment, both when they agree and when problems are still unsolved Incorporates many new images from experiments Provides end-of-chapter problems including computational exercises Includes more than fifty data tables and a detailed forty-page index Offers a solutions manual for instructors Featuring 370 figures and more than 1,000 recent and historically significant references, this volume serves as a valuable resource for graduate and undergraduate students in physics, physics professionals, engineers, applied mathematicians, materials scientists, and researchers in other fields who want to learn about the quantum and atomic underpinnings of materials science from a modern point of view.

Book Feynman Diagram Techniques in Condensed Matter Physics

Download or read book Feynman Diagram Techniques in Condensed Matter Physics written by Radi A. Jishi and published by Cambridge University Press. This book was released on 2013-04-25 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the application of Feynman diagram techniques for researchers and advanced undergraduate students in condensed matter theory and many-body physics.

Book Polarons

    Book Details:
  • Author : David Emin
  • Publisher : Cambridge University Press
  • Release : 2013
  • ISBN : 0521519063
  • Pages : 231 pages

Download or read book Polarons written by David Emin and published by Cambridge University Press. This book was released on 2013 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: A distinctive introduction to the principles governing polaron science for experimental and theoretical graduate students and researchers.

Book Spin Fluctuations in Itinerant Electron Magnetism

Download or read book Spin Fluctuations in Itinerant Electron Magnetism written by Toru Moriya and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ferromagnetism of metallic systems, especially those including transition metals, has been a controversial subject of modern science for a long time. This controversy sterns from the apparent dual character of the d-electrons responsible for magnetism in transition metals, i.e., they are itinerant elec trons described by band theory in their ground state, while at finite tem peratures they show various properties that have long been attributed to a system consisting of local magnetic moments. The most familiar example of these properties is the Curie-Weiss law of magnetic susceptibility obeyed by almost all ferromagnets above their Curie temperatures. At first the problem seemed to be centered around whether the d-elec trons themselves are localized or itinerant. This question was settled in the 1950s and early 1960s by various experimental investigations, in particular by observations of d-electron Fermi surfaces in ferromagnetic transition metals. These observations are generally consistent with the results of band calculations. Theoretical investigations since then have concentrated on explaining this dual character of d-electron systems, taking account of the effects of electron-electron correlations in the itinerant electron model. The problem in physical terms is to study the spin density fluctuati·ons, which are ne glected in the mean-field or one-electron theory, and their influence on the physical properties.

Book Physics of Carbon Nanotube Devices

Download or read book Physics of Carbon Nanotube Devices written by Francois Leonard and published by William Andrew. This book was released on 2008-11-18 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Possibly the most impactful material in the nanotechnology arena, carbon nanotubes have spurred a tremendous amount of scientific research and development. Their superior mechanical and chemical robustness makes them easily manipulable and allows for the assembly of various types of devices, including electronic, electromechanical, opto-electronic and sensing devices.In the field of nanotube devices, however, concepts that describe the properties of conventional devices do not apply. Carbon nanotube devices behave much differently from those using traditional materials, and offer entirely new functionality. This book – designed for researchers, engineers and graduate students alike – bridges the experimental and theoretical aspects of carbon nanotube devices. It emphasizes and explains the underlying physics that govern their working principles, including applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. Many of the aspects discussed here differ significantly from those learned in books or traditional materials, and are essential for the future development of carbon nanotube technology.• Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles • Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing. • Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission. • Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.* Bridges experimental and theoretical aspects of carbon nanotube devices, focusing on the underlying physics that govern their working principles * Explains applications in electronics, nanoelectromechanical systems, field emission, optoelectronics and sensing.* Other topics include: electrical contacts, p-n junctions, transistors, ballistic transport, field emission, oscillators, rotational actuators, electron-phonon scattering, photoconductivity, and light emission* Covers aspects that significantly differ from those learned in traditional materials, yet are essential for future advancement of carbon nanotube technology.

Book Macro  to Microscale Heat Transfer

Download or read book Macro to Microscale Heat Transfer written by D. Y. Tzou and published by John Wiley & Sons. This book was released on 2014-09-18 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition continues the well-received concept of thermal lagging through the revolutionary approach that focuses on the finite times required to complete the various physical processes in micro/nanoscale. Different physical processes in heat/mass transport imply different delay times, which are common regardless of the material type. The delay times, termed phase lags, are characteristics of materials. Therefore the dual-phase-lag model developed is able to describe eleven heat transfer models from macro to nanoscale in the same framework of thermal lagging. Recent extensions included are the lagging behavior in mass transport, as well as the nonlocal behavior in space, bearing the same merit of thermal lagging in time, in shrinking the ultrafast response down to the nanoscale. Key features: Takes a unified approach describing heat and mass transport from macro, micro to nanoscale Compares experimental results for model validation Includes easy to follow mathematical formulation Accompanied by a website hosting supporting material Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition is a comprehensive reference for researchers and practitioners, and graduate students in mechanical, aerospace, biological and chemical engineering.

Book Magnetic Oscillations in Metals

Download or read book Magnetic Oscillations in Metals written by D. Shoenberg and published by Cambridge University Press. This book was released on 2009-09-03 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is just over 80 years ago that a striking oscillatory field dependence was discovered in the magnetic behaviour of bismuth at low temperatures. This book was first published in 1984 and gives a systematic account of the nature of the oscillations, of the experimental techniques for their study and of their connection with the electronic structure of the metal concerned. Although the main emphasis is on the oscillations themselves and their many peculiarities, rather than on the theory of the electronic structure they reveal, sufficient examples are given in detail to illustrate the kind of information that has been obtained and how this information agrees with theoretical prediction.

Book Optical Properties of Solids

Download or read book Optical Properties of Solids written by Frederick Wooten and published by Academic Press. This book was released on 2013-10-22 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.