EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Earth abundant Transition Metal Chalcogenide Electrocatalysts for Renewable Energy Applications

Download or read book Earth abundant Transition Metal Chalcogenide Electrocatalysts for Renewable Energy Applications written by and published by . This book was released on 2014 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy sustainability is perhaps the greatest ongoing challenge facing humanity. Our need to replace fossil fuel-based sources of energy with environmentally friendly, secure, and renewable alternatives continues to grow, and although this fact has been long realized by the scientific community and beyond, no present-day solution effectively competes with fossil fuels from an economic or performance standpoint. Although several renewable energy technologies, including photovoltaic solar cells and fuel cell systems, can efficiently supply usable power with little or no environmental impact, they often suffer from high costs due to the expensive raw materials and complex processing steps required to produce high performance devices. These costs ultimately limit the scalability of such technologies and, consequently, their potential to address our looming energy concerns. However, the viability of many renewable energy technologies---particularly those rooted in electrochemistry---could be substantially increased by replacing expensive and scarce materials (such as noble metals) with low-cost, earth-abundant alternatives that exhibit comparable performance. The work collected here primarily focuses on identifying and developing such alternative electrocatalysts, generally within the family of transition metal chalcogenides, and assessing their utility in electrochemical energy conversion applications. Chapter 1 reviews both electrochemical energy conversion and alternative earth-abundant electrocatalyst materials, motivating their investigation and outlining the key challenges yet to be overcome. In Chapter 2, metallic cobalt pyrite (cobalt disulfide, CoS2) is introduced as a new earth-abundant electrocatalyst candidate material capable of boosting the performance of quantum dot-sensitized solar cells while simultaneously eliminating their reliance on precious platinum-based electrodes. Chapter 3 further builds upon Chapter 2 by establishing the high intrinsic electrocatalytic activity of CoS2 toward the hydrogen evolution reaction. Here, micro- and nanostructuring strategies are also demonstrated to synergistically enhance the electrocatalytic performance and stability of CoS2. Chapter 4 broadens the family of pyrite-phase electrocatalysts by showing that other earth-abundant transition metal disulfides exhibit electrocatalytic activity toward both polysulfide reduction and the hydrogen evolution reaction. Collectively, this work represents substantial progress toward the development of earth-abundant transition metal chalcogenide electrocatalysts for renewable energy applications, with the expectation that the lessons learned here should translate to other materials systems.

Book Engineering of Earth abundant Electrochemical Catalysts

Download or read book Engineering of Earth abundant Electrochemical Catalysts written by Dylan D. Rodene and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternative energy research into hydrogen production via water electrolysis addresses environmental and sustainability concerns associated with fossil fuel use. Renewable-powered electrolyzers are foreseen to produce hydrogen if energy and cost requirements are achieved. Electrocatalysts reduce the energy requirements of operating electrolyzers by lowering the reaction kinetics at the electrodes. Platinum group metals (PGMs) tend to be utilized as electrocatalysts but are not readily available and are expensive. Ni1xMox alloys, as low-cost and earth-abundant transition metal nanoparticles (NPs), are emerging as promising electrocatalyst candidates to replace expensive PGM catalysts in alkaline media. Pure-phase cubic and hexagonal Ni1−xMox alloy NPs with increasing Mo content (0_11.4%) were synthesized as electrocatalysts for the hydrogen evolution reaction (HER). In general, an increase in HER activity was observed with increasing Mo content. The cubic alloys were found to exhibit significantly higher HER activity in comparison to the hexagonal alloys, attributed to the higher Mo content in the cubic alloys. However, the compositions with similar Mo content still favored the cubic phase for higher activity. To produce a current density of -10 mA/cm2, the cubic and hexagonal alloy NPs require over-potentials ranging from -62 to -177 mV and -162 to -242 mV, respectively. The cubic alloys exhibited over-potentials that rival commercial Pt-based electrocatalysts ( -68 to -129 mV at -10 mA/cm2). The cubic Ni0.934Mo0.066 alloy NPs showed the highest alkaline HER activity of the electrocatalysts studied and therefore a patent application was submitted. Bulk Ni_Mo phases have been known as electrocatalysts for the HER for decades, while recently transition metal phosphides (TMPs) have emerged as stable and efficient PGM alternatives. Specifically, Ni2P has demonstrated good HER activity and improved stability for both alkaline and acidic media. However, Ni2P electrocatalysts are a compromise between earth-abundance, performance (lower than Ni_Mo and PGMs) and stability. For the first time Ni_Mo_P electrocatalysts were synthesized with varying atomic ratios of Mo as electrocatalysts for alkaline HER. Specific phases, compositions and morphologies were studied to understand the intrinsic properties of TMPs leading to high HER activity. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs were shown to be stable for 10 h at _10 mA cm−2 with over-potentials of _96 and _82 mV in alkaline media, respectively. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs exhibited an improved performance over the synthesized Ni2P sample (_126 mV at _10 mA cm−2), likely a result of the overall phosphorous content and hetero-structured morphologies. A strong correlation between phase dependence and the influence of Mo on HER activity needs to be further investigated. Furthermore, understanding the intrinsic properties of electrocatalysts leading to high water splitting performance and stability can apply electrocatalysts in other research applications, such as photoelectrochemical (PEC) water splitting, water remediation and sustainable chemical processing applications. Contributions to photocatalytic water remediation and electrochemical chlorinated generation to halogenate pyridone-based molecules are reported. Electrochemical techniques were developed and reported herein to aid in understanding electrochemical performance, chemical mechanisms and the stability of electrocatalysts at the electrode-electrolyte interfaces.

Book Chemically Deposited Metal Chalcogenide based Carbon Composites for Versatile Applications

Download or read book Chemically Deposited Metal Chalcogenide based Carbon Composites for Versatile Applications written by Fabian I. Ezema and published by Springer Nature. This book was released on 2023-03-30 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book satisfies the interest and curiosity of beginners in thin film electrode preparations, characterizations, and device making, while providing insight into the area for experts. The considerable literature on ‘metal chalcogenides based carbon composites and their versatile applications’ reflect its importance for research and demonstrate how it’s now reached a level where the timely review is necessary to understand the current progress and recent trends and future opportunities. In the book, the authors examine recent advances in the state-of-the-art fabrication techniques of metal sulfide based carbon composites along with their working mechanisms, associated issues/solutions, and possible future are discussed. In addition, detailed insight into the properties and various applications including principles, design, fabrication, and engineering aspects are further discussed.

Book Chalcogenide Materials for Energy Conversion

Download or read book Chalcogenide Materials for Energy Conversion written by Nicolas Alonso-Vante and published by Springer. This book was released on 2018-04-20 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses electrocatalysis based on chalcogenides, particularly in the nanoscale domain. Special attention is paid to the hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR). The book provides an introduction to materials synthesis; the basic principles of electrocatalysis; related precious metal versus non-precious metal catalytic center chalcogenides as well as supports; and the role of such supports in stabilizing the catalytic centers. In short: pursuing a bottom-up approach, it covers the properties of this class of electrocatalysts and examines their applications in low-temperature fuel systems such as microfluidic fuel cells for portable devices. Accordingly, it is ideally suited for all professionals and researchers interested in electrochemistry, renewable energy and electrocatalysis, and non-precious metal centers for chemical energy conversion.

Book Earth abundant Metal Chalcogenides

Download or read book Earth abundant Metal Chalcogenides written by Wenxiao Huang and published by . This book was released on 2017 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal chalcogenides (MCs) have attracted significant attention in a variety of energy devices for the wide range of properties that MCs can offer by combining different metal cations and chalcogen anions. However, the most common MCs used for photovoltaic and thermoelectric devices all consist rare or toxic elements which rises criticism on their candidacy as a solution for future sustainable energy. The focus of this work is to develop low-cost solution methods to synthesize non-toxic earth-abundant MC materials Cu2ZnSnS4 (CZTS) and Sb2S3 for thin-film solar cells and thermoelectric generator. By tweaking the surface chemistry of CZTS nanocrystals, we fabricated CZTS thin-films with high carrier mobility and large grain size without involving hazardous procedure. We also derived ligand-free nanostructured CZTS from aerogel for the first time, and explored its potential application for thermoelectric generator. At last, we’ll show you a planar heterojunction Sb2S3 solar cell with an efficiency of 4.2% fabricated via a simple sol-gel method. Combined with interface modification, we achieved a record-breaking power conversion efficiency 5.3%.

Book Transition Metal Chalcogenide Hybrid Systems as Catalysts for Energy Conversion and Biosensing

Download or read book Transition Metal Chalcogenide Hybrid Systems as Catalysts for Energy Conversion and Biosensing written by Siddesh Umapathi and published by . This book was released on 2020 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency. This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR catalytic activity in alkaline medium. This spinel class of compounds generically referred to as AB2Se4 where A and B are divalent and trivalent cations respectively. Interestingly, FeCo2Se4 and FeNi2Se4, both showed highly efficient catalytic activity with low overpotential. Increase in performance was observed when these two spinel compositions were mixed with conducting carbon matrix, which decreased the overpotential significantly and increased the stability. Finally, the metal selenides were also applied towards electrochemical bio sensing of dopamine and glucose. Electrodeposited and hydrothermally synthesized CuSe was studied towards detection of ultralow concentrations of dopamine in neutral phosphate buffer solution. The electrodeposited CuSe was also active towards detection of glucose in alkaline electrolyte. CuSe showed low detection limit, high sensitivity and selectivity towards these biomolecules"--Abstract, page v.

Book Sulfide and Selenide Based Materials for Emerging Applications

Download or read book Sulfide and Selenide Based Materials for Emerging Applications written by Goutam Kumar Dalapati and published by Elsevier. This book was released on 2022-06-17 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sulfide and Selenide-Based Materials for Emerging Applications explores a materials and device-based approach to the transition to low-cost sustainable thin film photovoltaic devices and energy storage systems. Part 1 examines recent advances in renewable technologies and materials for sustainable development, as well as photovoltaic energy storage devices. Part 2 discusses thin film solar cells with earth abundant materials, highlighting the power conversion efficiency of the kesterite-based solar cells. Kesterite film technology including different synthesis and doping method designs are also discussed, along with emerging sulfide semiconductors with potential in thin film photovoltaics/flexible devices. In Part 3 sulfur- and selenides-based materials for thermoelectric applications are explored. Part 4 covers chalcogenide semiconductors with applications in electrochemical water splitting for green hydrogen generation and oxygen generation, as well as the latest research on layered 2D transition metal chalcogenides for electrochemical water splitting. To conclude, part 5 discusses recent developments of storage technologies such as Li-S batteries, sulfide-based supercapacitors and metal-ion batteries, and the development of 3D printing sulfides/selenides for energy conversion and storage. This book is a useful resource for those involved in green energy technology and decarbonization and is designed for a broad audience, from students to experienced scientists. Discusses the emerging sulfide/selenide based thin film absorber materials and their deposition methods Previews device engineering techniques that have been developed to enhance the power conversion efficiency and lifetime of sulfide/selenide based thin film solar cells Provides an update on what low cost sulfide/selenide based electro-catalysts have become available and the comparison of their performance vs. noble metal catalysts

Book Advanced Functional Materials

Download or read book Advanced Functional Materials written by Nevin Tasaltin and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomically Precise Electrocatalysts for Electrochemical Energy Applications

Download or read book Atomically Precise Electrocatalysts for Electrochemical Energy Applications written by Anuj Kumar and published by Springer Nature. This book was released on with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Green Energy Harvesting

Download or read book Green Energy Harvesting written by Pooja Devi and published by John Wiley & Sons. This book was released on 2022-10-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive resource summarizing current approaches to generating hydrogen from water and reducing CO2 into various hydrocarbons Green Energy Harvesting: Materials for Hydrogen Generation and Carbon Dioxide Reduction provides an in-depth treatment of the subject by exploring the fundamentals required for the selection of the materials, their synthesis methods, and possible ways to modify them for higher efficiency and enhanced stability. The prospects of adopting these sustainable solutions at a commercial level are summarized. Special emphasis is given to the figure-of-merits for currently developed systems for hydrogen generation and CO2 reduction and to an assessment of available materials in terms of efficacy and efficiency. Green Energy Harvesting also includes information on: Renewable energy in general, including the role of renewable hydrogen and hydrocarbon fuels, and possible renewable energy sources A fundamental understanding hydrogen generation and CO2 reduction Device development and deployment status for commercial usage and applications of H2 and hydrocarbon fuels in various sectors Electrocatalysts, 2D materials, and hybrid materials for CO2 reduction and H2 generation Green Energy Harvesting is a highly useful guide for both novice and experienced researchers involved in renewable energy and carbon dioxide utilization that explains the current state of the field and discusses future perspectives.

Book Synthesis and Electrocatalytic Properties of Structure Engineered First row Transition Metal Derivatives

Download or read book Synthesis and Electrocatalytic Properties of Structure Engineered First row Transition Metal Derivatives written by Xiaodong Yan and published by . This book was released on 2018 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrogen is a green energy carrier, producing only water when combusted, and a hydrogen economy has been considered the ideal green economy for human society. Water electrolysis can produce high-purity hydrogen on a large scale, and if the electricity used in water electrolysis is obtained from renewable energy, a sustainable energy chain can be achieved. Fuel cell technology offers a highly efficient way of converting chemical energy from a fuel into electricity through an electrochemical reaction. Fuel cells are expected to be one of the mainstream energy conversion devices for many applications such as the transportation and portable electronic systems. Hydrogen fuel cell technology is, of course, the ideal choice. However, the hydrogen storage is still a big challenge due to its gaseous nature, extremely low boiling point, and high inflammability. While advanced hydrogen storage technology is under development, fuel cells using liquid fuels (e.g. hydrazine) need to be developed. The key to both water electrolysis and fuel cells is the electrocatalyst. Currently, the noble metal based materials are still the state-of-the-art electrocatalysts for water electrolysis and in fuel cells in terms of catalytic activity and catalyst durability. However, their scarcity and high price hinder their widespread commercial use. Therefore, it is imperative to develop earth-abundant, low-cost electrocatalyst materials that have high catalytic activity comparable to or even better than the noble metal based electrocatalysts. Nowadays, the research emphasis of earth-abundant electrocatalysts is thus primarily placed on enhancing the catalytic activity or lowering the overpotential that is needed to drive the electrochemical reactions. The catalytic performance of an electrocatalyst is associated with its surface area, near-surface structure, electronic structure, conductivity, crystal size, etc. Rational structural modification of the electrocatalyst materials and/or architectural design of the catalyst electrodes can help enlarge the surface area, increase the active sites, tune the electronic structure and conductivity, and so on. In this dissertation, a series of strategies (e.g. hydrogenation, solvothermal reduction, and electrochemical tuning) have been developed to fabricate structure-tuned electrocatalyst materials for electrochemical water splitting and electro-oxidation of hydrazine. Well-defined Co/Co3O4 and Co/CoO core-shell heterostructures have been found to be highly active towards hydrogen evolution reaction (HER) and hydrazine oxidation, respectively. FeNi3/NiFeOx nanohybrids have been thoroughly characterized for HER and oxygen evolution reaction (OER). Nano-on-micro Cu has been explored as a highly efficient catalyst towards electro-oxidation of hydrazine. Cobalt hydroxide carbonate with rich grain boundaries has been shown to be a highly efficient non-metallic electrocatalyst towards hydrazine oxidation.

Book Exploring Transition Metal Chalcogenides for Bio Sensing and Environmental Remediation

Download or read book Exploring Transition Metal Chalcogenides for Bio Sensing and Environmental Remediation written by Bahareh Golrokh Amin and published by . This book was released on 2019 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Electrocatalysts play an inevitable role in many applications including energy storage, energy conversion, and biosensing. The state-of-the-art noble metal-based electrocatalysts have long been used in full water splitting, non-enzymatic glucose sensing, and supercapacitors. However, scarcity and high cost of noble metals restrict utilization of such electrocatalysts in large-scale implementations. Transition metal-based electrodes have been considered as a potential solution to address these drawbacks as well as to enhance the electrocatalytic performance. In this work, applicability of non-oxidic transition metal based electrocatalysts is evaluated. Transition metal chalcogenides are expected to have high catalytic performance owing to their facilitated electron cloud delocalization on the transition metal site as well as enhanced covalency in the lattice due to the low anion electronegativity. To examine this theory, CoNi2Se4 is studied for its application in full water splitting. This catalyst shows an excellent electrocatalytic activity with low overpotential of 160 mV @ 10 mA cm−2 for OER. CoNi2Se4-rGO on Ni foam has also been employed as an electrocatalyst for the direct oxidation of glucose. A high sensitivity of 18.89 mA mM−1 cm−2 at low applied potential of 0.35 V vs. Ag|AgCl is achieved. For the same application, we investigated Ni3Te2. With electrodeposition method, a high glucose detection sensitivity of 41.615 mA cm−2 mM−1 is reported. We also fabricated a hydrothermally synthesized Ni3Te2 with a sensitivity of 35.213 mA cm−2 mM−1. Finally, we examined NiCo2Se4/rGO for its application in supercapacitors and achieved a high specific capacitance of 2038.55 F g−1 with a high energy density and power density of 67.01 W h kg−1 and 903.61 W kg−1, respectively"--Abstract, page iv.

Book Rational Design of Transition Metal Nitrogen Carbon Electrocatalysts for Oxygen Reduction Reaction

Download or read book Rational Design of Transition Metal Nitrogen Carbon Electrocatalysts for Oxygen Reduction Reaction written by Zhuang Liu and published by . This book was released on 2018 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT OF THE DISSERTATION Rational Design of Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction by Zhuang Liu Doctor of Philosophy in Chemical Engineering University of California, Los Angeles, 2018 Professor Yunfeng Lu, Chair The harvest and conversion of energy is of crucial importance for human civilization. Today, the fast growth in energy consumption, together with the environmental problems caused by fossil fuel usage, calls for renewable and clean energy supply, such as solar, wind, geothermal, and tidal energy. However, such energies are not consistent in both time and location, bringing energy storage on request. Intensive research has been focused on the development of electrochemical energy storage (EES) devices. Among these EES devices, hydrogen fuel cells and metal-air batteries have attracted the special attention because of their high theoretical energy densities. Yet, one major issue lies in the sluggish oxygen reduction reaction (ORR) that takes place at the cathodes. For example, the theoretical voltage of a hydrogen-oxygen fuel cell is 1.23 V (standard condition). However, the voltage output obtained under a meaningful current density is only about 0.7 V, where the voltage loss is primarily caused by the overpotential in the cathodes. Developing efficient electro-catalysts, which can lower the overpotential of ORR, is indispensable for achieving high performance devices. The state-of-the-art ORR electro-catalysts are generally based on platinum, which is limited by cost and scarcity. Developing electro-catalysts based on earth abundant metal elements is critical for large-scale application of fuel cells and metal-air batteries. Among the non-precious-metal catalysts (NPMCs) explored in recent decades, pyrolyzed iron-nitrogen-carbon (Fe-N-C) catalysts is widely regarded as the most promising candidate for replacing platinum due to their high activity. However, the traditional method for preparing Fe-N-C catalysts involves high-temperature pyrolysis of the precursors, which is a highly complex and unpredictable process. As-prepared Fe-N-C catalysts usually contain mixed chemical phases (e.g., Fe-based nanoparticles, Fe-N coordination site and various nitrogen species), as well as carbon scaffolds with random morphology. Such complexity makes it difficult to identify the active site and control the porous structure. Though progress has been made in improving their performance through delicate selection of precursors, such process is largely based on test-and-trial method, shedding little light on the understanding of the material. In this dissertation, we designed a novel "post iron decoration" synthetic strategy towards efficient Fe-N-C catalysts, which de-convolutes the growth of iron and nitrogen species, enables the rational design of the catalyst structure, and provides a series of effective model materials for active site probing. Specifically, liquid iron penta-carbonyl was used to wet the surface of mesoporous N-doped carbon spheres (NMC), whose porous structure is determined by the template used for preparation. The obtained Fe(CO)5/NMC complex was then pyrolyzed to generate the Fe/NMC catalysts. Through comparative study and thorough material characterization, we demonstrated that the pyridinic-N of NMC anchors the Fe atoms to form Fe-Nx active sites during pyrolysis, while the graphitic-N remains ORR active. The excessive Fe atoms were aggregated forming fine nanoparticles, which were subsequently oxidized forming amorphous-iron oxide/iron crystal core-shell structure. All the composing elements of Fe/NMC catalysts are uniformly distributed on the NMC scaffold, whose porous structure is shown to be not affected by Fe decoration, guaranteeing the effective exposure of active sites. The best performing Fe/NMC catalysts exhibited a high half-wave potential of 0.862 V, which is close to that of the benchmark 40% Pt/C catalyst. Such high activity is primarily attributed to the Fe-Nx active sites in the catalysts. While the surface oxidized Fe crystallites though not being the major active site, is revealed to catalyze the reduction of HO2-, the 2e ORR product, facilitating the 4e reduction of oxygen. Finally, such synthetic strategy is successfully extended to prepare other Me-N-C materials. Based on the established understanding of the active sites, we then complexed the active Fe(CO)5 molecules with a N-rich metal-organic framework (ZIF-8) to form a precursor, which was subsequently pyrolyzed to form Fe-NC catalysts. During the pyrolysis, Fe(CO)5 reacts homogeneously with the ZIF-8 scaffold, leading to the formation of uniform distribution of Fe-related active sites on the N-rich porous carbon derived from ZIF-8. The zinc atoms in the crystalline structure of ZIF-8 serves as thermo-sacrificial template, resulting in the formation of hierarchical pores that provide abundant easily accessible ORR active sites. In virtue of these advantageous features, the best performing Fe-NC catalyst exhibited a high half-wave potential of 0.91 V in rotating disk electrode experiment in 0.1 M NaOH. Furthermore, zinc-air battery constructed with Fe-NC-900-M as the cathode catalyst exhibited high open-circuit voltage (1.5 V) and a peak power density of 271 mW cm-2, which outperforms those made with 40% Pt/C catalyst (1.48 V, 1.19 V and 242 mW cm-2), and most noble-metal free ORR catalysts reported so far. Finally, such a synthetic method is economic and easily-scalable, offering possibility for further activity and durability improvement.

Book Electrochemical Water Splitting

Download or read book Electrochemical Water Splitting written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2019-10-25 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. The book reviews the fundamental aspects and describes recent research advances. Properties and characterization methods for various types of electrocatalysts are discussed, including noble metals, earth-abundant metals, metal-organic frameworks, carbon nanomaterials and polymers. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.

Book Emerging Nanotechnologies for Renewable Energy

Download or read book Emerging Nanotechnologies for Renewable Energy written by Waqar Ahmed and published by Elsevier. This book was released on 2021-02-16 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Nanotechnologies for Renewable Energy offers a detailed overview of the benefits and applications of nanotechnology in the renewable energy sector. The book highlights recent work carried out on the emerging role of nanotechnology in renewable energy applications, ranging from photovoltaics, to battery technology and energy from waste. Written by international authors from both industry and academia, the book covers topics including scaling up from laboratory to industrial scale. It is a valuable resource for students at postgraduate and advanced undergraduate levels, researchers in industry and academia, technology leaders, and policy and decision-makers in the energy and engineering sectors. Offers insights into a wide range of nanoscale technologies for the generation, storage and transfer of energy Shows how nanotechnology is being used to create new, more environmentally friendly energy solutions Assesses the challenges involved in scaling up nanotechnology-based energy solutions to an industrial scale

Book Transition Metal Chalcogenides for the Electrocatalysis of Water

Download or read book Transition Metal Chalcogenides for the Electrocatalysis of Water written by Chuan-Pei Lee and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable energy technology has received enormous attention in recent years. Specifically, electrochemical water splitting is considered to be the cleanest technique for the production of promising fuels, for example, hydrogen and oxygen, where transition metal (di)chalcogenides (TMCs) as electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been a growing interest. In this chapter, the typical preparation methods of TMCs such as chemical vapor phase deposition (CVD) and solvothermal synthesis are introduced. Then, several TMC materials for catalyzing HER and OER are reviewed. Most importantly, this chapter also introduced some in situ approaches to realize the mechanism of electrocatalytic behavior toward HER and OER. Finally, the conclusion and futuristic prospects of TMCs in HER and OER are discussed.

Book Chalcogenide Based Nanomaterials as Photocatalysts

Download or read book Chalcogenide Based Nanomaterials as Photocatalysts written by Mohammad Mansoob Khan and published by Elsevier. This book was released on 2021-04-07 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. Provides information on the development of novel chalcogenide-based nanomaterials Outlines the fundamentals of chalcogenides-based photocatalysis Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials