EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Early Seral Mixed conifer Forest Structure and Composition Following a Wildfire Reburn in the Sierra Nevada

Download or read book Early Seral Mixed conifer Forest Structure and Composition Following a Wildfire Reburn in the Sierra Nevada written by Erin Alvey and published by . This book was released on 2016 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: Before the era of modern fire suppression, California's northern Sierra Nevada mixed-conifer and yellow pine forests were self-regulating; recurring short-interval, low-mixed severity wildfires maintained forest structure and composition, which in turn exerted bottom-up controls on subsequent wildfires. As a result of fire suppression, and coupled with the effects of climate warming and other anthropogenic disturbances, the fundamental structure of mixed-conifer and yellow pine forests has shifted. Wildfires may now be increasing in size, severity, and frequency across western North America. However, little is known about the post-fire impacts of repeat wildfire on a forest after a long era of suppression. In this study, I report findings regarding early successional vegetation of Sierra Nevada mixed conifer forests that experienced two large wildfires, the Storrie Fire (in 2000) and the Chips Fire (in 2012). These wildfires burned within the historic fire frequency window for this ecosystem, but much of the forest within their fire footprints had not burned for at least 100 years beforehand. I addressed three questions: (1) how does wildfire affect plant community structure and composition among yellow pine and mixed-conifer forests?; (2) do fire severity and fire frequency interact to influence post-fire vegetation conditions?; and (3) are post-fire responses similar between forests that have burned once, twice, or have not burned in the past century, or that have burned at high, moderate, or low severity? In 2014, I sampled 74 plots in the Plumas and Lassen National Forests. Of these plots, 50 plots were sampled from three fire severity classes and two fire frequencies in and around the Chips Fire (2012). A portion of the Chips Fire had reburned the Storrie Fire (2000), affording the opportunity to compare them to post-fire effects of a single burn on fire-suppressed forests at the same stage of post-fire succession. I also collected data in 24 unburned plots to contrast fire-suppressed plots with plots that experienced wildfire. Wildfire decreased tree density but also decreased available seed sources, which can limit tree regeneration in high severity fire or reburns. Increased tree mortality also produced greater fuel loading in reburns compared to single burns, though burned plots exhibited less fuel loading and fuel connectivity than unburned plots. I also observed that wildfire diversified species composition in single burns, increasing species richness, evenness, and diversity. However, reburning plots appeared to reduce species richness, causing reburns to exhibit richness similar to unburned plots. Still, reburn plots only shared about half of its species with unburned plots, and 13% of species were exclusive to reburns. My study was limited to a particular time (two years post-fire), and post-fire effects may become more pronounced as early seral communities continue to respond to the effects of the wildfire. Nonetheless, my results indicate that wildfire can produce forest structure and composition that is dramatically different from fire-suppressed mixed-conifer forests. Though it is unknown whether ecological processes can be restored by just one or two wildfire events within a short time-span in fire-suppressed landscapes, the post-fire conditions observed in my study have begun to resemble pre-suppression conditions by exhibiting reduced tree densities, lower fuel loads, and enhanced species diversity, especially at low to moderate fire severities. Because post-fire vegetation response is a stochastic and long-term process, understanding the effects of wildfire reintroduction and reburn will likely take multiple observations.

Book Plant Community Response to Thinning and Repeated Fire in a Sierra Nevada Mixed conifer Forest Understory

Download or read book Plant Community Response to Thinning and Repeated Fire in a Sierra Nevada Mixed conifer Forest Understory written by Maxwell Odland and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fire suppression in the western United States has significantly altered forest composition and structure, resulting in higher risk from fire and large-scale drought and bark beetle events. Mechanical thinning and prescribed fire are common treatments designed to reduce high-severity fire risk, but few studies have tracked long-term understory plant community response with repeated fire application that emulates historic fire regimes. We evaluate changes in understory plant community diversity and composition and environmental characteristics over two decades following a factorial field experiment that crosses thinning and two applications of prescribed fire at the Teakettle Experimental Forest (TEF) in the southern Sierra Nevada. We compare experimental fuels treatments against nearby old-growth, mixed-conifer forests with frequent, low severity fire regimes in Yosemite and Kings Canyon National Parks. This study points to key differences in how thinning and prescribed fire treatments affect plant understory diversity. Although local understory plant richness initially increased most following thinning combined with prescribed fire, this treatment did not generate understory communities similar to those in reference forests; Intense shrub growth resulted in low understory evenness and beta diversity over time, which a secondary burn treatment did not alter. Burning without thinning retained a more heterogeneous understory over time and, at least in the two years following the second burn treatment, with high understory richness and evenness similar to reference forest understories. Our results suggest management treatments may need to focus on creating heterogeneity in burn effects and environmental conditions to foster diverse forest understories and limit post-treatment shrub cover.

Book Long term Effects of Fire Hazard Reduction Treatments in the Southern Cascades and Northern Sierra Nevada  California

Download or read book Long term Effects of Fire Hazard Reduction Treatments in the Southern Cascades and Northern Sierra Nevada California written by Lindsay Aney Chiono and published by . This book was released on 2012 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historic fire regimes in the dry conifer forests of the southern Cascade and northern Sierra Nevada regions of California were characterized by relatively frequent fires of low and mixed severity. Human management practices since the mid-19th century have altered the disturbance role of fire in these dry yellow pine and mixed conifer forest ecosystems. Fire suppression, high-grade timber harvesting, and livestock grazing have reduced the frequency of burning and caused a shift in the structure and species composition of forest vegetation. These changes, including high levels of accumulated fuel and increased structural homogeneity and dominance of shade-tolerant tree species, combined with a warming climate, have rendered many stands susceptible to high-severity fire. In many forests of the western United States, wildfires are increasingly difficult and costly to control, and human communities are regularly threatened during the fire season. Treating wildland fuels to reduce wildfire hazards has become a primary focus of contemporary forest management, particularly in the wildland-urban interface. The specific objectives of treatment are diverse, but in general, treatments address accumulated surface fuels, the fuel ladders that carry fire into the forest canopy, and surface and canopy fuel continuity. These modifications to forest fuels can alleviate the severity of a future wildfire and support suppression activities through improved access and reduced fire intensity. While fuel reduction treatments are increasingly common in western forests, the long-term structural and ecological effects of treatment remain poorly understood. This dissertation uses a chronosequence of treated stands to examine the temporal influence of treatment on forest structure, the understory plant community, and wildfire hazard. The first chapter examines the effects of fuels reduction treatment on stand structure, overstory species composition, and ground and surface fuels. The stand structures and reduced surface fuel loads created by fuels modification are temporary, yet few studies have assessed the lifespan of treatment effects. The structural legacies of treatment were still present in the oldest treatment sites. Treatments reduced site occupancy (stand density and basal area) and increased quadratic mean diameter by approximately 50%. The contribution of shade-tolerant true firs to stand density was also reduced by treatment. Other stand characteristics, particularly timelag fuel loads, seedling density, and shrub cover, exhibited substantial variability, and differences between treatment age classes and between treatment and control groups were not statistically significant. The second chapter evaluates fuel treatment longevity based on potential wildfire behavior and effects on vegetation. Forest managers must divide scarce resources between fuel treatment maintenance, which is necessary to retain low hazard conditions in treated stands, and the construction of new treatments. Yet the most basic questions concerning the lifespan of treatment effectiveness have rarely been engaged in the literature. In this study, field-gathered fuels and vegetation data were used to aid fuel model selection and to parameterize a fire behavior and effects model, Fuels Management Analyst Plus. In addition, a semi-qualitative, semi-quantitative protocol was applied to assess ladder fuel hazard in field sampling plots. Untreated sites exhibited fire behavior that would challenge wildfire suppression efforts, and projected overstory mortality was considerable. In contrast, estimated fire behavior and severity were low to moderate in even the oldest fuel treatments, those sampled 8-26 years after treatment implementation. Findings indicate that in the forest types characteristic of the northern Sierra Nevada and southern Cascades, treatments for wildfire hazard reduction retain their effectiveness for more than 10-15 years and possibly beyond a quarter century. Fuel treatment activities disturb the forest floor, increase resource availability, and may introduce non-native plant propagules to forest stands. Non-native plant invasions can have profound consequences for ecosystem structure and function. For these reasons, there is concern that treatment for fire hazard reduction may promote invasion by exotic species. Several short-term studies have shown small increases in non-native abundance as a result of treatment, but the long-term effects have rarely been addressed in the literature. The final chapter examines treatment effects on the understory plant community and on cover of the forest floor, as mineral soil exposure has been linked to invasion. Regression tree analysis provided insights into the influence of treatment and site characteristics on these variables. Treatments increased forb and graminoid cover, but temporal trends in abundance were opposite. An initial increase in forb cover in the most recently treated sites was followed by a gradual decline, while mean graminoid cover was highest in the oldest treatments. Shrubs dominated live plant abundance. Shrub cover showed few temporal trends, but was negatively associated with canopy cover. Mineral soil exposure was increased by treatment and declined slowly over time, remaining elevated in the oldest treatments. Non-native plant species were very rare in the treatment sites sampled in this study. Despite the availability of bare mineral soil and the proximity of transportation corridors, a source of non-native propagules, non-natives were recorded in only 2% of sampling plots. This study suggests that forest disturbance associated with treatment for hazardous fuels reduction may not produce significant invasions in these forest types.

Book Synthesis of Research Into the Long term Outlook for Sierra Nevada Forests Following the Current Bark Beetle Epidemic

Download or read book Synthesis of Research Into the Long term Outlook for Sierra Nevada Forests Following the Current Bark Beetle Epidemic written by and published by . This book was released on 2019 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes the 2012-2017 bark beetle epidemic in the Sierra Nevada and its implications for long-term changes in tree species composition and forest structure. Preliminary plot and landscape-scale data are reviewed, showing higher levels of mortality for pine species and greater impacts in the southern Sierra Nevada compared to the northern portions of the range. The federal government owns approximately three quarters of the forested area impacted by high levels of tree morality, with the remainder of the land controlled by nonindustrial (18%) and industrial (6%) ownerships. The accumulation of dead and downed fuel and standing dead trees is expected to increase fire intensity and severity, and pose significant hazards for fire control efforts. Potential long-term changes in Sierra Nevada forest composition were explored with a GIS analysis conducted for the Sierra National Forest, located in the southern Sierra. GIS layers included very high fire threat, aspect, high tree mortality, topographic position classification, and climatic exposure. A factor of one was assigned to each parameter (i.e., no weighting for any of the variables). The modeling showed that 4% of the Sierra National Forest is at very high risk for type conversion from mixed conifer to shrublands, and 12% is at high risk. This information can inform landowners regarding the general locations where successful reforestation will be most challenging, as well as illustrate the scale of concern for one national forest in the southern Sierra Nevada. Changes to disturbance regimes, continuing land use changes, and climate change with associated species shifts pose significant challenges for maintaining healthy and resilient forests in the Sierra Nevada. Significant unknowns exist regarding the future species composition for vast portions of this region, but type conversions from mixed conifer to shrublands or oak/grass/woodland appear likely for some areas. Recommended best management practices focus on reducing tree densities, achieving successful reforestation, and using adaptive management in the face of currently unknown future changes in growing conditions. With the exception of the bark beetle epidemic in southern California in the early 2000s, lessons learned from other locations in western North America that have had sustained bark beetle epidemics in the past decade are not directly applicable to Sierra Nevada, with its Mediterranean climate, complex topography, and mixed-conifer forests. For these reasons, ongoing research efforts to characterize and understand tree mortality drivers and changes in forest structure and composition in the Sierra Nevada are extremely important.

Book Fire in Sierra Nevada Forests

Download or read book Fire in Sierra Nevada Forests written by George E. Gruell and published by . This book was released on 2001 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Fire in Sierra Nevada Forests, George Gruell examines the woodlands through repeat photography: rephotographing sites depicted in historical photographs to compare past vegetation to present. The book asks readers to study the evidence, then take an active part in current debates over prescribed fire, fuel buildup, logging, and the management of our national forests.

Book Climate  Fire and Forest Management in the Sierra Nevada

Download or read book Climate Fire and Forest Management in the Sierra Nevada written by Jens Turner Stevens and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Montane coniferous forests in western North America are experiencing rapid environmental change, due in part to increasing fire severity and decreasing winter snowpack. Many of these forests experienced frequent low-severity fires prior to intensive logging and fire suppression during the nineteenth and twentieth centuries, which have led to increased fuel loads and increased dominance by fire-sensitive, shade-tolerant tree species. Forest managers seeking to mitigate increases in fire size and severity are increasingly implementing fuel-reduction treatments, which target small trees and surface fuels for removal. However, the ecological effects of these treatments on subsequent wildfire behavior, forest resilience, understory plant community dynamics, and plant invasions have not been well documented. In Chapter 1, I utilized a large-scale natural experiment to investigate the effects of recent fuel treatments on subsequent wildfire severity and structural resilience, in twelve different yellow pine and mixed-conifer forest sites in the mountains of eastern California. By quantifying forest structure in treated and adjacent untreated stands, both after wildfire and without wildfire, I demonstrated that treatments reduced the amount of structural change caused by wildfire, as a result of their moderating effect on fire severity. Two years post-wildfire, treated stands resembled pre-wildfire stands, in that they had greater tree litter cover, more tree seedling regeneration, less shrub cover and recruitment, and less bare soil relative to untreated stands, which generally burned at very high severity. In Chapter 2, I used the same network of twelve sites to test whether the gradient of disturbance severity, from untreated and unburned stands to high-severity wildfire stands, generated predictable patterns of understory plant community composition and diversity. I incorporated information on the evolutionary history of the native flora to show that increasing disturbance severity favored understory species with southern biogeographic affinity. Analysis of leaf functional traits indicated that increases in microclimatic water deficit in high-severity stands favored species with reduced specific leaf area relative to their leaf Nitrogen concentration. Native plant diversity at the stand scale was greatest in treated stands that subsequently burned in a wildfire, however this diversity peak was due to increased plot-scale alpha diversity relative to undisturbed stands, and increased between-plot beta diversity relative to high-severity wildfire stands. Conversely, exotic plant diversity peaked in high-severity wildfire stands that had not been previously treated. In Chapter 3, I investigated the population-level response of non-native species to interactions between forest harvesting strategies, prescribed fire, and winter snowpack depth using a transplant experiment with two non-native shrubs: Scotch broom (Cytisus scoparius L. (Link)) and Spanish broom (Spartium junceum L.). Both species had the strongest positive population growth responses to canopy thinning, rather than clearcuts or dense canopies. Despite positive effects of prescribed fire on seed germination, frequent prescribed fire was shown to decrease population growth rates for both species. However, experimental snowpack reductions led to increased winter survival by both species, which translated into strong positive effects on population growth rates. Under a future climate scenario where winter snowpack levels increase in elevation, middle-elevation forests that experience fuel treatments may therefore be at increased risk of invasion by non-native plants due to synergies between climate and management regimes.

Book Old growth Forests in the Sierra Nevada

Download or read book Old growth Forests in the Sierra Nevada written by Debby Beardsley and published by . This book was released on 1999 with total page 52 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Forest Structure on Yellow Pine mixed conifer Resilience to Wildfire and Bark Beetle Disturbance in the Sierra Nevada  California

Download or read book The Effect of Forest Structure on Yellow Pine mixed conifer Resilience to Wildfire and Bark Beetle Disturbance in the Sierra Nevada California written by Michael J. Koontz and published by . This book was released on 2019 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disturbances like wildfire and bark beetle activity can alter forest structure, which influences the outcomes of future disturbances. The long-term persistence of forest ecosystems hinges on these feedbacks, which promotes resilience. These feedbacks are explored by measuring disturbance severity as well as local-scale forest structure at broad spatial extents in the yellow pine/mixed-conifer forest system of the Sierra Nevada, California. Tools such as massively parallel cloud-based GIS and drone remote sensing were used to collect data about how forest structure affects wildfire and bark beetle disturbance. Overall, this work demonstrates how an understanding of the complexities of local forest structure, including the size, species, and spatial distribution of trees, can generate insight into how broader-scale patterns of tree mortality arise during wildfire and bark beetle disturbance.--adapted from abstract.

Book Changes in Forest Structure  Community Composition  and Development in Ponderosa Pine Forests Following a Mixed severity Wildfire in the Black Hills  SD  USA

Download or read book Changes in Forest Structure Community Composition and Development in Ponderosa Pine Forests Following a Mixed severity Wildfire in the Black Hills SD USA written by Tara Lynn Keyser and published by . This book was released on 2007 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Determination of Topographic Variation in Stand Structure and Composition of Sierra Nevada Forests Under an Active Fire Regime

Download or read book Determination of Topographic Variation in Stand Structure and Composition of Sierra Nevada Forests Under an Active Fire Regime written by Jamie Marilyn Lydersen and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Management efforts to promote forest resiliency as climate changes have often used historical forest conditions to provide general guidance for fuels reduction and forest restoration treatments. However, it has been difficult to identify what stand conditions might be fire and drought resilient because historical data and reconstruction studies are generally limited to accurate estimates only of large, live tree density and composition. Other stand features such as smaller tree densities, dead wood, understory conditions, regeneration and fuel loads have been difficult to quantify, estimate how they may vary across a landscape, or assess how they would be affected by fire under current climate conditions. We sampled old-growth, mixed-conifer forests with at least two low-intensity fires within the last 65 years in 150 plots at 48 sample sites ranging over 400 km of the Sierra Nevada. Recent fire history had the strongest influence on understory conditions with small tree density decreasing and shrub cover increasing with the increased intensity and frequency of fire associated with upper slope and ridge-top locations. In contrast, stand structures associated with large, overstory trees such as total basal area, canopy cover, and the abundance of large snags and logs increased in topographic locations associated with more mesic, productive sites regardless of fire history. Our results suggest that topography, fire history and their interaction affect forest conditions by directly influencing fire intensity, and indirectly by differences in productivity, leading to heterogeneous forest conditions across a landscape.

Book Wildland Fire in Ecosystems

Download or read book Wildland Fire in Ecosystems written by and published by . This book was released on 1998 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Twentieth century Changes in Forests of the Sierra Nevada  California

Download or read book Twentieth century Changes in Forests of the Sierra Nevada California written by Jim Bouldin and published by . This book was released on 1999 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Method for Determining Fire History in Coniferous Forests of the Mountain West

Download or read book A Method for Determining Fire History in Coniferous Forests of the Mountain West written by Stephen F. Arno and published by . This book was released on 1977 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.