EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Global Aspects of Classical Integrable Systems

Download or read book Global Aspects of Classical Integrable Systems written by Richard H. Cushman and published by Birkhäuser. This book was released on 2015-06-01 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.

Book Elements of Classical and Quantum Integrable Systems

Download or read book Elements of Classical and Quantum Integrable Systems written by Gleb Arutyunov and published by Springer. This book was released on 2019-07-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.

Book Mathematical Aspects of Classical and Celestial Mechanics

Download or read book Mathematical Aspects of Classical and Celestial Mechanics written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.

Book Introduction to Classical Integrable Systems

Download or read book Introduction to Classical Integrable Systems written by Olivier Babelon and published by Cambridge University Press. This book was released on 2003-04-17 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the theory of classical integrable systems, discussing the various approaches to the subject and explaining their interrelations. The book begins by introducing the central ideas of the theory of integrable systems, based on Lax representations, loop groups and Riemann surfaces. These ideas are then illustrated with detailed studies of model systems. The connection between isomonodromic deformation and integrability is discussed, and integrable field theories are covered in detail. The KP, KdV and Toda hierarchies are explained using the notion of Grassmannian, vertex operators and pseudo-differential operators. A chapter is devoted to the inverse scattering method and three complementary chapters cover the necessary mathematical tools from symplectic geometry, Riemann surfaces and Lie algebras. The book contains many worked examples and is suitable for use as a textbook on graduate courses. It also provides a comprehensive reference for researchers already working in the field.

Book What Is Integrability

    Book Details:
  • Author : Vladimir E. Zakharov
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642887031
  • Pages : 339 pages

Download or read book What Is Integrability written by Vladimir E. Zakharov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other's work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting particles. One of the main tasks of quantum electrodynamics is the development of a theory of an integrable perturbed quantum system, namely, noninteracting electromagnetic and electron-positron fields.

Book Statistical Mechanics of Lattice Systems

Download or read book Statistical Mechanics of Lattice Systems written by Sacha Friedli and published by Cambridge University Press. This book was released on 2017-11-23 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

Book Lectures on Integrable Systems

Download or read book Lectures on Integrable Systems written by Jens Hoppe and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mainly drawing on explicit examples, the author introduces the reader to themost recent techniques to study finite and infinite dynamical systems. Without any knowledge of differential geometry or lie groups theory the student can follow in a series of case studies the most recent developments. r-matrices for Calogero-Moser systems and Toda lattices are derived. Lax pairs for nontrivial infinite dimensionalsystems are constructed as limits of classical matrix algebras. The reader will find explanations of the approach to integrable field theories, to spectral transform methods and to solitons. New methods are proposed, thus helping students not only to understand established techniques but also to interest them in modern research on dynamical systems.

Book Integrable Systems of Classical Mechanics and Lie Algebras

Download or read book Integrable Systems of Classical Mechanics and Lie Algebras written by A. M. Perelomov and published by Springer. This book was released on 1990 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.

Book Solitons

    Book Details:
  • Author : P. G. Drazin
  • Publisher : Cambridge University Press
  • Release : 1989-02-09
  • ISBN : 9780521336550
  • Pages : 244 pages

Download or read book Solitons written by P. G. Drazin and published by Cambridge University Press. This book was released on 1989-02-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of solitons in the physical sciences.

Book Nonlinear Dynamical Systems Of Mathematical Physics  Spectral And Symplectic Integrability Analysis

Download or read book Nonlinear Dynamical Systems Of Mathematical Physics Spectral And Symplectic Integrability Analysis written by Denis Blackmore and published by World Scientific. This book was released on 2011-03-04 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field — including some innovations by the authors themselves — that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.

Book Nonlinear Waves

    Book Details:
  • Author : Lokenath Debnath
  • Publisher : CUP Archive
  • Release : 1983-12-30
  • ISBN : 9780521254687
  • Pages : 376 pages

Download or read book Nonlinear Waves written by Lokenath Debnath and published by CUP Archive. This book was released on 1983-12-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.

Book Solitons and the Inverse Scattering Transform

Download or read book Solitons and the Inverse Scattering Transform written by Mark J. Ablowitz and published by SIAM. This book was released on 1981-01-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localized pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation. For such exactly solvable problems, the inverse scattering transform provides the general solution of their initial value problems. It is equally surprising that some of these exactly solvable problems arise naturally as models of physical phenomena. Simply put, the inverse scattering transform is a nonlinear analog of the Fourier transform used for linear problems. Its value lies in the fact that it allows certain nonlinear problems to be treated by what are essentially linear methods. Chapters 1 and 2 of the book describe in detail the theory of the inverse scattering transform. Chapter 3 discusses alternate methods for these exactly solvable problems and the interconnections among them. Physical applications are described in Chapter 4, where, for example, similarities between deep water waves and nonlinear optics become evident. Because of the fundamental role of linear theory, there is an extensive appendix that addresses the linear problems and their solutions.

Book Nonlinear Evolution Equations and Painlev   Test

Download or read book Nonlinear Evolution Equations and Painlev Test written by W.-H. Steeb and published by World Scientific. This book was released on 1988 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an edited version of lectures given by the authors at a seminar at the Rand Afrikaans University. It gives a survey on the Painlev‚ test, Painlev‚ property and integrability. Both ordinary differential equations and partial differential equations are considered.

Book Hamiltonian Dynamics

    Book Details:
  • Author : Gaetano Vilasi
  • Publisher : World Scientific
  • Release : 2001-03-09
  • ISBN : 9814496731
  • Pages : 457 pages

Download or read book Hamiltonian Dynamics written by Gaetano Vilasi and published by World Scientific. This book was released on 2001-03-09 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems.As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity.As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations.

Book Topics in Gravitational Dynamics

Download or read book Topics in Gravitational Dynamics written by Daniel Benest and published by Springer Science & Business Media. This book was released on 2008-01-02 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This set of lectures collects surveys of open problems in celestial dynamics and dynamical astronomy applied to solar, extra-solar and galactic systems. The discovery and thus the possibility to study many new extra-solar planetary systems have spurred new developments in the field and enabled the testing and enlargement of the domains of validity of theoretical predictions through the Nekhoroshev theorem.

Book Mathematical Aesthetic Principles nonintegrable Systems

Download or read book Mathematical Aesthetic Principles nonintegrable Systems written by Murray Muraskin and published by World Scientific. This book was released on 1995 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical aesthetics is not discussed as a separate discipline in other books than this, even though it is reasonable to suppose that the foundations of physics lie in mathematical aesthetics. This book presents a list of mathematical principles that can be classified as ?aesthetic? and shows that these principles can be cast into a nonlinear set of equations. Then, with this minimal input, the book shows that one can obtain lattice solutions, soliton systems, closed strings, instantons and chaotic-looking systems as well as multi-wave-packet solutions as output. These solutions have the common feature of being nonintegrable, i.e. the results of integration depend on the integration path. The topic of nonintegrable systems has not been given much attention in other books. Hence we discuss techniques for dealing with such systems.

Book Chaos and Nonlinear Dynamics

Download or read book Chaos and Nonlinear Dynamics written by Robert C. Hilborn and published by . This book was released on 2000 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.