Download or read book Dynamics in Infinite Dimensions written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2002-07-12 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications
Download or read book Infinite Dimensional Dynamical Systems in Mechanics and Physics written by Roger Temam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first attempt at a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics. Other areas of science and technology are included where appropriate. The relation between infinite and finite dimensional systems is presented from a synthetic viewpoint and equations considered include reaction-diffusion, Navier-Stokes and other fluid mechanics equations, magnetohydrodynamics, thermohydraulics, pattern formation, Ginzburg-Landau, damped wave and an introduction to inertial manifolds.
Download or read book Infinite Dimensional Dynamical Systems written by James C. Robinson and published by Cambridge University Press. This book was released on 2001-04-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Download or read book Stochastic Differential Equations in Infinite Dimensions written by Leszek Gawarecki and published by Springer Science & Business Media. This book was released on 2010-11-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The systematic study of existence, uniqueness, and properties of solutions to stochastic differential equations in infinite dimensions arising from practical problems characterizes this volume that is intended for graduate students and for pure and applied mathematicians, physicists, engineers, professionals working with mathematical models of finance. Major methods include compactness, coercivity, monotonicity, in a variety of set-ups. The authors emphasize the fundamental work of Gikhman and Skorokhod on the existence and uniqueness of solutions to stochastic differential equations and present its extension to infinite dimension. They also generalize the work of Khasminskii on stability and stationary distributions of solutions. New results, applications, and examples of stochastic partial differential equations are included. This clear and detailed presentation gives the basics of the infinite dimensional version of the classic books of Gikhman and Skorokhod and of Khasminskii in one concise volume that covers the main topics in infinite dimensional stochastic PDE’s. By appropriate selection of material, the volume can be adapted for a 1- or 2-semester course, and can prepare the reader for research in this rapidly expanding area.
Download or read book Optimal Control Theory for Infinite Dimensional Systems written by Xungjing Li and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa tions that are derived from certain physical laws, such as Newton's law, Fourier's law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
Download or read book Infinite Dimensional Dynamical Systems written by John Mallet-Paret and published by Springer Science & Business Media. This book was released on 2012-10-11 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.
Download or read book Local Bifurcations Center Manifolds and Normal Forms in Infinite Dimensional Dynamical Systems written by Mariana Haragus and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Download or read book Stability of Infinite Dimensional Stochastic Differential Equations with Applications written by Kai Liu and published by CRC Press. This book was released on 2005-08-23 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ
Download or read book The Geometry of Infinite Dimensional Groups written by Boris Khesin and published by Springer Science & Business Media. This book was released on 2008-09-28 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives an overview of various classes of infinite-dimensional Lie groups and their applications in Hamiltonian mechanics, fluid dynamics, integrable systems, gauge theory, and complex geometry. The text includes many exercises and open questions.
Download or read book Theory of Simple Glasses written by Giorgio Parisi and published by Cambridge University Press. This book was released on 2020-01-09 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics.
Download or read book One Dimensional Dynamics written by Welington de Melo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).
Download or read book Interest Rate Models an Infinite Dimensional Stochastic Analysis Perspective written by René Carmona and published by Springer Science & Business Media. This book was released on 2007-05-22 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the mathematical issues that arise in modeling the interest rate term structure by casting the interest-rate models as stochastic evolution equations in infinite dimensions. The text includes a crash course on interest rates, a self-contained introduction to infinite dimensional stochastic analysis, and recent results in interest rate theory. From the reviews: "A wonderful book. The authors present some cutting-edge math." --WWW.RISKBOOK.COM
Download or read book Dimension Groups and Dynamical Systems written by Fabien Durand and published by Cambridge University Press. This book was released on 2022-02-03 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first self-contained exposition of the connections between symbolic dynamical systems, dimension groups and Bratteli diagrams.
Download or read book Dynamics with Inequalities written by David E. Stewart and published by SIAM. This book was released on 2011-08-04 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book that comprehensively addresses dynamics with inequalities.
Download or read book Functional Differential Equations written by J. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hoped that these notes will serve as an introduction to the subject of functional differential equations. The topics are very selective and represent only one particular viewpoint. Complementary material dealing with extensions of closely related topics are given in the notes at the end. A short bibliography is appended as source material for further study. The author is very grateful to the Mathematics Department at UCLA for having extended the invitation to give a series of lectures on functional differ ential equations during the Applied Mathematics Year, 1968-1969. The extreme interest and sincere criticism of the members of the audience were a constant source of inspiration in the preparation of the lectures as well as the notes. Except for Sections 6, 32, 33, 34 and some other minor modifications, the notes represent the material covered in two quarters at UCLA. The author wishes to thank Katherine McDougall and Sandra Spinacci for their excellent preparation of the text. The author is also indebted to Eleanor Addison for her work on the drawings and to Dr. H. T. Banks for his careful proofreading of this material. Jack K. Hale Providence March 4, 1971 v TABLE OF CONTENTS 1. INTRODUCTION •••••.•..••.•••••••••.•••..•.••••••.••••••.••.••.•••.••• 1 2 • A GENERAL INITIAL VALUE PROBLEM 11 3 • EXISTENCE 13 4. CONTINUATION OF SOLUTIONS 16 CONTINUOUS DEPENDENCE AND UNIQUENESS 21 5.
Download or read book Dynamics of Evolutionary Equations written by George R. Sell and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.
Download or read book Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics written by Wilfried Grecksch and published by World Scientific. This book was released on 2020-04-22 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.