EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamics and Bifurcations

Download or read book Dynamics and Bifurcations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.

Book Dynamics and Bifurcations of Non Smooth Mechanical Systems

Download or read book Dynamics and Bifurcations of Non Smooth Mechanical Systems written by Remco I. Leine and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.

Book Elements of Differentiable Dynamics and Bifurcation Theory

Download or read book Elements of Differentiable Dynamics and Bifurcation Theory written by David Ruelle and published by Elsevier. This book was released on 2014-05-10 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.

Book Dynamical Systems  Bifurcation Analysis and Applications

Download or read book Dynamical Systems Bifurcation Analysis and Applications written by Mohd Hafiz Mohd and published by Springer Nature. This book was released on 2019-10-11 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of ​Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.

Book Methods In Equivariant Bifurcations And Dynamical Systems

Download or read book Methods In Equivariant Bifurcations And Dynamical Systems written by Pascal Chossat and published by World Scientific Publishing Company. This book was released on 2000-02-28 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.

Book Nonlinear Oscillations  Dynamical Systems  and Bifurcations of Vector Fields

Download or read book Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Book Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations

Download or read book Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations written by Jacob Palis Júnior and published by Cambridge University Press. This book was released on 1995-01-05 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to the classical theory and its generalizations, aimed at mathematicians and scientists working in dynamical systems.

Book Lectures on Bifurcations  Dynamics and Symmetry

Download or read book Lectures on Bifurcations Dynamics and Symmetry written by Michael Field and published by CRC Press. This book was released on 1996-09-11 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an expanded version of a Master Class on the symmetric bifurcation theory of differential equations given by the author at the University of Twente in 1995. The notes cover a wide range of recent results in the subject, and focus on the dynamics that can appear in the generic bifurcation theory of symmetric differential equations. Many of the results and examples in the book are new and have not been previously published. The first four chapters contain an accessible presentation of the fundamental work by Field and Richardson on symmetry breaking and the Maximal Isotropy Subgroup Conjecture. The remainder of the book focuses on recent research of the author and includes chapters on the invariant sphere theorem, coupled cell systems, heteroclinic cycles , equivariant transversality, and an Appendix (with Xiaolin Peng) giving a new low dimensional counterexample to the converse of the Maximal Isotropy Subgroup Conjecture. The chapter on coupled cell systems includes a weath of new examples of 'cycling chaos'. The chapter on equivariant transversality is introductory and centres on an extended discussion of an explicit system of four coupled nonlinear oscillators. The style and format of the original lectures has largely been maintained and the notes include over seventy exercises *with hints for solutions and suggestions kfor further reading). In general terms, the notes are directed at mathematicians and aplied scientists working in the field of bifurcation theory who wish to learn about some of the latest developments and techniques in equivariant bifurcation theory. The notes are relatively self-contained and are structured so that they can form the basis for a graduate level course in equivariant bifurcation theory.

Book Differential Dynamical Systems  Revised Edition

Download or read book Differential Dynamical Systems Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Book Dynamics of the Chemostat

Download or read book Dynamics of the Chemostat written by Abdelhamid Ajbar and published by CRC Press. This book was released on 2011-08-09 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ubiquitous tool in mathematical biology and chemical engineering, the chemostat often produces instabilities that pose safety hazards and adversely affect the optimization of bioreactive systems. Singularity theory and bifurcation diagrams together offer a useful framework for addressing these issues. Based on the authors’ extensive work in this field, Dynamics of the Chemostat: A Bifurcation Theory Approach explores the use of bifurcation theory to analyze the static and dynamic behavior of the chemostat. Introduction The authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the modeling approaches used for bioreactive systems, the different kinetic expressions for growth rates, and tools, such as multiplicity, bifurcation, and singularity theory, for analyzing nonlinear systems. Application The text moves on to the static and dynamic behavior of the basic unstructured model of the chemostat for constant and variable yield coefficients as well as in the presence of wall attachment. It then covers the dynamics of interacting species, including pure and simple microbial competition, biodegradation of mixed substrates, dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator–prey interactions. The authors also examine dynamics of the chemostat with product formation for various growth models, provide examples of bifurcation theory for studying the operability and dynamics of continuous bioreactor models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book presents a cohesive mathematical framework for analyzing and modeling the macro- and microscopic interactions occurring in chemostats. The text includes models that describe the intracellular and operating elements of the bioreactive system. It also explains the mathematical theory behind the models.

Book Nonlinear Dynamics and Chaos

Download or read book Nonlinear Dynamics and Chaos written by Steven H. Strogatz and published by CRC Press. This book was released on 2018-05-04 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Book Bifurcation Theory And Applications

Download or read book Bifurcation Theory And Applications written by Shouhong Wang and published by World Scientific. This book was released on 2005-06-27 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Book Bifurcation and Stability in Nonlinear Dynamical Systems

Download or read book Bifurcation and Stability in Nonlinear Dynamical Systems written by Albert C. J. Luo and published by Springer Nature. This book was released on 2020-01-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.

Book Elements of Applied Bifurcation Theory

Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Book Bifurcation Theory of Functional Differential Equations

Download or read book Bifurcation Theory of Functional Differential Equations written by Shangjiang Guo and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).

Book Bifurcation Theory And Methods Of Dynamical Systems

Download or read book Bifurcation Theory And Methods Of Dynamical Systems written by Maoan Han and published by World Scientific. This book was released on 1997-11-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.

Book Nonlinear Dynamics

    Book Details:
  • Author : Marc R Roussel
  • Publisher : Morgan & Claypool Publishers
  • Release : 2019-05-01
  • ISBN : 1643274643
  • Pages : 190 pages

Download or read book Nonlinear Dynamics written by Marc R Roussel and published by Morgan & Claypool Publishers. This book was released on 2019-05-01 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses a hands-on approach to nonlinear dynamics using commonly available software, including the free dynamical systems software Xppaut, Matlab (or its free cousin, Octave) and the Maple symbolic algebra system. Detailed instructions for various common procedures, including bifurcation analysis using the version of AUTO embedded in Xppaut, are provided. This book also provides a survey that can be taught in a single academic term covering a greater variety of dynamical systems (discrete versus continuous time, finite versus infinite-dimensional, dissipative versus conservative) than is normally seen in introductory texts. Numerical computation and linear stability analysis are used as unifying themes throughout the book. Despite the emphasis on computer calculations, theory is not neglected, and fundamental concepts from the field of nonlinear dynamics such as solution maps and invariant manifolds are presented.