Download or read book Dynamical Systems and Small Divisors written by Hakan Eliasson and published by Springer. This book was released on 2004-10-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems of stability in the theory of dynamical systems face the difficulty of small divisors. The most famous example is probably given by Kolmogorov-Arnold-Moser theory in the context of Hamiltonian systems, with many applications to physics and astronomy. Other natural small divisor problems arise considering circle diffeomorphisms or quasiperiodic Schroedinger operators. In this volume Hakan Eliasson, Sergei Kuksin and Jean-Christophe Yoccoz illustrate the most recent developments of this theory both in finite and infinite dimension. A list of open problems (including some problems contributed by John Mather and Michel Herman) has been included.
Download or read book Number Theory and Dynamical Systems written by M. M. Dodson and published by Cambridge University Press. This book was released on 1989-11-09 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems.
Download or read book From Number Theory to Physics written by Michel Waldschmidt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch.
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Download or read book Handbook of Dynamical Systems written by H. Broer and published by Elsevier. This book was released on 2010-11-10 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
Download or read book Dynamical Systems and Chaos written by Henk Broer and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.
Download or read book Stable and Random Motions in Dynamical Systems written by Jurgen Moser and published by Princeton University Press. This book was released on 2016-03-02 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, astronomers have been interested in the motions of the planets and in methods to calculate their orbits. Since Newton, mathematicians have been fascinated by the related N-body problem. They seek to find solutions to the equations of motion for N masspoints interacting with an inverse-square-law force and to determine whether there are quasi-periodic orbits or not. Attempts to answer such questions have led to the techniques of nonlinear dynamics and chaos theory. In this book, a classic work of modern applied mathematics, Jürgen Moser presents a succinct account of two pillars of the theory: stable and chaotic behavior. He discusses cases in which N-body motions are stable, covering topics such as Hamiltonian systems, the (Moser) twist theorem, and aspects of Kolmogorov-Arnold-Moser theory. He then explores chaotic orbits, exemplified in a restricted three-body problem, and describes the existence and importance of homoclinic points. This book is indispensable for mathematicians, physicists, and astronomers interested in the dynamics of few- and many-body systems and in fundamental ideas and methods for their analysis. After thirty years, Moser's lectures are still one of the best entrées to the fascinating worlds of order and chaos in dynamics.
Download or read book Hamiltonian Dynamical Systems written by R.S MacKay and published by CRC Press. This book was released on 2020-08-17 with total page 797 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical mechanics is a subject that is teeming with life. However, most of the interesting results are scattered around in the specialist literature, which means that potential readers may be somewhat discouraged by the effort required to obtain them. Addressing this situation, Hamiltonian Dynamical Systems includes some of the most significant papers in Hamiltonian dynamics published during the last 60 years. The book covers bifurcation of periodic orbits, the break-up of invariant tori, chaotic behavior in hyperbolic systems, and the intricacies of real systems that contain coexisting order and chaos. It begins with an introductory survey of the subjects to help readers appreciate the underlying themes that unite an apparently diverse collection of articles. The book concludes with a selection of papers on applications, including in celestial mechanics, plasma physics, chemistry, accelerator physics, fluid mechanics, and solid state mechanics, and contains an extensive bibliography. The book provides a worthy introduction to the subject for anyone with an undergraduate background in physics or mathematics, and an indispensable reference work for researchers and graduate students interested in any aspect of classical mechanics.
Download or read book The Art of Modeling Dynamic Systems written by Foster Morrison and published by Courier Corporation. This book was released on 2012-03-07 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text illustrates the roles of statistical methods, coordinate transformations, and mathematical analysis in mapping complex, unpredictable dynamical systems. It describes the benefits and limitations of the available modeling tools, showing engineers and scientists how any system can be rendered simpler and more predictable. Written by a well-known authority in the field, this volume employs practical examples and analogies to make models more meaningful. The more universal methods appear in considerable detail, and advanced dynamic principles feature easy-to-understand examples. The text draws careful distinctions between mathematical abstractions and observable realities. Additional topics include the role of pure mathematics, the limitations of numerical methods, forecasting in the presence of chaos and randomness, and dynamics without calculus. Specialized techniques and case histories are coordinated with a carefully selected and annotated bibliography. The original edition was a Library of Science Main Selection in May, 1991. This new Dover edition features corrections by the author and a new Preface.
Download or read book Quasi Periodic Motions in Families of Dynamical Systems written by Hendrik W. Broer and published by Springer. This book was released on 2009-01-25 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol'd-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic tori in the phase space is a nowhere dense set of positive Lebesgue measure, a so called Cantor family. This fact implies that open classes of Hamiltonian systems exist that are not ergodic. The main aim of the book is to study the changes in this picture when other classes of systems - or contexts - are considered.
Download or read book Perturbation Theory written by Giuseppe Gaeta and published by Springer Nature. This book was released on 2022-12-16 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.
Download or read book Chaotic Worlds from Order to Disorder in Gravitational N Body Dynamical Systems written by B.A. Steves and published by Springer Science & Business Media. This book was released on 2006-09-22 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the recent NATO Advanced Study Institute "Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems", this state of the art textbook, written by internationally renowned experts, provides an invaluable reference volume for all students and researchers in gravitational n-body systems. The contributions are especially designed to give a systematic development from the fundamental mathematics which underpin modern studies of ordered and chaotic behaviour in n-body dynamics to their application to real motion in planetary systems. This volume presents an up-to-date synoptic view of the subject.
Download or read book The Method of Intrinsic Scaling written by José Miguel Urbano and published by Springer Science & Business Media. This book was released on 2008-05-20 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This set of lectures, which had its origin in a mini course delivered at the Summer Program of IMPA (Rio de Janeiro), is an introduction to intrinsic scaling, a powerful method in the analysis of degenerate and singular PDEs.In the first part, the theory is presented from scratch for the model case of the degenerate p-Laplace equation. The second part deals with three applications of the theory to relevant models arising from flows in porous media and phase transitions.
Download or read book The Oxford Handbook of Computational Economics and Finance written by Shu-Heng Chen and published by Oxford University Press. This book was released on 2018-01-12 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oxford Handbook of Computational Economics and Finance provides a survey of both the foundations of and recent advances in the frontiers of analysis and action. It is both historically and interdisciplinarily rich and also tightly connected to the rise of digital society. It begins with the conventional view of computational economics, including recent algorithmic development in computing rational expectations, volatility, and general equilibrium. It then moves from traditional computing in economics and finance to recent developments in natural computing, including applications of nature-inspired intelligence, genetic programming, swarm intelligence, and fuzzy logic. Also examined are recent developments of network and agent-based computing in economics. How these approaches are applied is examined in chapters on such subjects as trading robots and automated markets. The last part deals with the epistemology of simulation in its trinity form with the integration of simulation, computation, and dynamics. Distinctive is the focus on natural computationalism and the examination of the implications of intelligent machines for the future of computational economics and finance. Not merely individual robots, but whole integrated systems are extending their "immigration" to the world of Homo sapiens, or symbiogenesis.
Download or read book Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems written by Antonio Giorgilli and published by Cambridge University Press. This book was released on 2022-05-05 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Download or read book Library of Congress Subject Headings written by Library of Congress and published by . This book was released on 2011 with total page 1640 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dynamical Systems written by George David Birkhoff and published by American Mathematical Soc.. This book was released on 1927-12-31 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. --Yearbook of the American Philosophical Society The author's great book ... is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. --Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his own work on the subject, which was itself strongly influenced by Poincare's approach to dynamical systems. With this book, Birkhoff also demonstrated that the subject was a beautiful theory, much more than a compendium of individual results. The influence of this work can be found in many fields, including differential equations, mathematical physics, and even what is now known as Morse theory. The present volume is the revised 1966 reprinting of the book, including a new addendum, some footnotes, references added by Jurgen Moser, and a special preface by Marston Morse. Although dynamical systems has thrived in the decades since Birkhoff's book was published, this treatise continues to offer insight and inspiration for still more generations of mathematicians.