Download or read book Statistical Methods for Dynamic Treatment Regimes written by Bibhas Chakraborty and published by Springer Science & Business Media. This book was released on 2013-07-23 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies.
Download or read book Dynamic Treatment Regimes written by Anastasios A. Tsiatis and published by CRC Press. This book was released on 2019-12-19 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Treatment Regimes: Statistical Methods for Precision Medicine provides a comprehensive introduction to statistical methodology for the evaluation and discovery of dynamic treatment regimes from data. Researchers and graduate students in statistics, data science, and related quantitative disciplines with a background in probability and statistical inference and popular statistical modeling techniques will be prepared for further study of this rapidly evolving field. A dynamic treatment regime is a set of sequential decision rules, each corresponding to a key decision point in a disease or disorder process, where each rule takes as input patient information and returns the treatment option he or she should receive. Thus, a treatment regime formalizes how a clinician synthesizes patient information and selects treatments in practice. Treatment regimes are of obvious relevance to precision medicine, which involves tailoring treatment selection to patient characteristics in an evidence-based way. Of critical importance to precision medicine is estimation of an optimal treatment regime, one that, if used to select treatments for the patient population, would lead to the most beneficial outcome on average. Key methods for estimation of an optimal treatment regime from data are motivated and described in detail. A dedicated companion website presents full accounts of application of the methods using a comprehensive R package developed by the authors. The authors’ website www.dtr-book.com includes updates, corrections, new papers, and links to useful websites.
Download or read book Statistical Remedies for Medical Researchers written by Peter F. Thall and published by Springer Nature. This book was released on 2020-03-12 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates numerous statistical practices that are commonly used by medical researchers, but which have severe flaws that may not be obvious. For each example, it provides one or more alternative statistical methods that avoid misleading or incorrect inferences being made. The technical level is kept to a minimum to make the book accessible to non-statisticians. At the same time, since many of the examples describe methods used routinely by medical statisticians with formal statistical training, the book appeals to a broad readership in the medical research community.
Download or read book Adaptive Treatment Strategies in Practice Planning Trials and Analyzing Data for Personalized Medicine written by Michael R. Kosorok and published by SIAM. This book was released on 2015-12-08 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personalized medicine is a medical paradigm that emphasizes systematic use of individual patient information to optimize that patient's health care, particularly in managing chronic conditions and treating cancer. In the statistical literature, sequential decision making is known as an adaptive treatment strategy (ATS) or a dynamic treatment regime (DTR). The field of DTRs emerges at the interface of statistics, machine learning, and biomedical science to provide a data-driven framework for precision medicine. The authors provide a learning-by-seeing approach to the development of ATSs, aimed at a broad audience of health researchers. All estimation procedures used are described in sufficient heuristic and technical detail so that less quantitative readers can understand the broad principles underlying the approaches. At the same time, more quantitative readers can implement these practices. This book provides the most up-to-date summary of the current state of the statistical research in personalized medicine; contains chapters by leaders in the area from both the statistics and computer sciences fields; and also contains a range of practical advice, introductory and expository materials, and case studies.
Download or read book Targeted Learning written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.
Download or read book Exposure Response Modeling written by Jixian Wang and published by CRC Press. This book was released on 2015-07-17 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the Latest Statistical Approaches for Modeling Exposure-Response RelationshipsWritten by an applied statistician with extensive practical experience in drug development, Exposure-Response Modeling: Methods and Practical Implementation explores a wide range of topics in exposure-response modeling, from traditional pharmacokinetic-pharmacody
Download or read book Design and Analysis of Subgroups with Biopharmaceutical Applications written by Naitee Ting and published by Springer Nature. This book was released on 2020-05-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the theories and applications on subgroups in the biopharmaceutical industry. Drawing from a range of expert perspectives in academia and industry, this collection offers an overarching dialogue about recent advances in biopharmaceutical applications, novel statistical and methodological developments, and potential future directions. The volume covers topics in subgroups in clinical trial design; subgroup identification and personalized medicine; and general issues in subgroup analyses, including regulatory ones. Included chapters present current methods, theories, and case applications in the diverse field of subgroup application and analysis. Offering timely perspectives from a range of authoritative sources, the volume is designed to have wide appeal to professionals in the pharmaceutical industry and to graduate students and researchers in academe and government.
Download or read book Bayesian Designs for Phase I II Clinical Trials written by Ying Yuan and published by CRC Press. This book was released on 2017-12-19 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.
Download or read book Proceedings of the Second Seattle Symposium in Biostatistics written by Danyu Lin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers presented at the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data. The symposium was held in 2000 to celebrate the 30th anniversary of the University of Washington School of Public Health and Community Medicine. It featured keynote lectures by Norman Breslow, David Cox and Ross Prentice and 16 invited presentations by other prominent researchers. The papers contained in this volume encompass recent methodological advances in several important areas, such as longitudinal data, multivariate failure time data and genetic data, as well as innovative applications of the existing theory and methods. This volume is a valuable reference for researchers and practitioners in the field of correlated data analysis.
Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.
Download or read book Disease Control Priorities Third Edition Volume 6 written by King K. Holmes and published by World Bank Publications. This book was released on 2017-11-06 with total page 1027 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.
Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Download or read book Handbook of Missing Data Methodology written by Geert Molenberghs and published by CRC Press. This book was released on 2014-11-06 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Download or read book The Black Book of Communism written by Stéphane Courtois and published by Harvard University Press. This book was released on 1999 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt: This international bestseller plumbs recently opened archives in the former Soviet bloc to reveal the accomplishments of communism around the world. The book is the first attempt to catalogue and analyse the crimes of communism over 70 years.
Download or read book Competing Risks and Multistate Models with R written by Jan Beyersmann and published by Springer Science & Business Media. This book was released on 2011-11-18 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.
Download or read book An Approach to Evaluate the Effects of Concomitant Prescribing of Opioids and Benzodiazepines on Veteran Deaths and Suicides written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-10-16 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opioid prescriptions for acute and chronic pain increased dramatically from the late 1990s into the current decade in both the civilian and the Department of Veterans Affairs and Department of Defense treatment environments. Similarly, prescriptions for benzodiazepines also increased significantly for anxiety and insomnia. Combinations of opioid and benzodiazepines have proven fatal when taken concurrently, with research demonstrating this phenomenon for nearly 40 years. This issue is exacerbated within the veteran population because of higher rates of pain, anxiety and other related health issues due to military life. An evaluation of the relationship between opioid and benzodiazepine medication practices at the VA is necessary to improve treatment for mental health and combat-related trauma for veterans. An Approach to Evaluate the Effects of Concomitant Prescribing of Opioids and Benzodiazepines on Veteran Deaths and Suicides investigates the effects of opioid initiation and tapering strategies in the presence of benzodiazepines in veterans. This report explores neurobiology and the principles of addiction and tolerance, in addition to the current use of opioids and benzodiazepines for treating pain and anxiety in both the veteran and general population. It also provides a protocol to evaluate the relationship between opioid and benzodiazepine medication practices. This framework is a critical foundation for further research to improve concomitant opioid and benzodiazepine medication practices for veterans and the general population.
Download or read book Pain Management and the Opioid Epidemic written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2017-09-28 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drug overdose, driven largely by overdose related to the use of opioids, is now the leading cause of unintentional injury death in the United States. The ongoing opioid crisis lies at the intersection of two public health challenges: reducing the burden of suffering from pain and containing the rising toll of the harms that can arise from the use of opioid medications. Chronic pain and opioid use disorder both represent complex human conditions affecting millions of Americans and causing untold disability and loss of function. In the context of the growing opioid problem, the U.S. Food and Drug Administration (FDA) launched an Opioids Action Plan in early 2016. As part of this plan, the FDA asked the National Academies of Sciences, Engineering, and Medicine to convene a committee to update the state of the science on pain research, care, and education and to identify actions the FDA and others can take to respond to the opioid epidemic, with a particular focus on informing FDA's development of a formal method for incorporating individual and societal considerations into its risk-benefit framework for opioid approval and monitoring.