EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamic Programming

    Book Details:
  • Author : Eric V. Denardo
  • Publisher : Courier Corporation
  • Release : 2012-12-27
  • ISBN : 0486150852
  • Pages : 240 pages

Download or read book Dynamic Programming written by Eric V. Denardo and published by Courier Corporation. This book was released on 2012-12-27 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed both for those who seek an acquaintance with dynamic programming and for those wishing to become experts, this text is accessible to anyone who's taken a course in operations research. It starts with a basic introduction to sequential decision processes and proceeds to the use of dynamic programming in studying models of resource allocation. Subsequent topics include methods for approximating solutions of control problems in continuous time, production control, decision-making in the face of an uncertain future, and inventory control models. The final chapter introduces sequential decision processes that lack fixed planning horizons, and the supplementary chapters treat data structures and the basic properties of convex functions. 1982 edition. Preface to the Dover Edition.

Book Dynamic Programming

    Book Details:
  • Author : John O.S. Kennedy
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9400941919
  • Pages : 343 pages

Download or read book Dynamic Programming written by John O.S. Kennedy and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Humans interact with and are part of the mysterious processes of nature. Inevitably they have to discover how to manage the environment for their long-term survival and benefit. To do this successfully means learning something about the dynamics of natural processes, and then using the knowledge to work with the forces of nature for some desired outcome. These are intriguing and challenging tasks. This book describes a technique which has much to offer in attempting to achieve the latter task. A knowledge of dynamic programming is useful for anyone interested in the optimal management of agricultural and natural resources for two reasons. First, resource management problems are often problems of dynamic optimization. The dynamic programming approach offers insights into the economics of dynamic optimization which can be explained much more simply than can other approaches. Conditions for the optimal management of a resource can be derived using the logic of dynamic programming, taking as a starting point the usual economic definition of the value of a resource which is optimally managed through time. This is set out in Chapter I for a general resource problem with the minimum of mathematics. The results are related to the discrete maximum principle of control theory. In subsequent chapters dynamic programming arguments are used to derive optimality conditions for particular resources.

Book Dynamic Programming

Download or read book Dynamic Programming written by Moshe Sniedovich and published by CRC Press. This book was released on 2010-09-10 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating a number of the author’s recent ideas and examples, Dynamic Programming: Foundations and Principles, Second Edition presents a comprehensive and rigorous treatment of dynamic programming. The author emphasizes the crucial role that modeling plays in understanding this area. He also shows how Dijkstra’s algorithm is an excellent example of a dynamic programming algorithm, despite the impression given by the computer science literature. New to the Second Edition Expanded discussions of sequential decision models and the role of the state variable in modeling A new chapter on forward dynamic programming models A new chapter on the Push method that gives a dynamic programming perspective on Dijkstra’s algorithm for the shortest path problem A new appendix on the Corridor method Taking into account recent developments in dynamic programming, this edition continues to provide a systematic, formal outline of Bellman’s approach to dynamic programming. It looks at dynamic programming as a problem-solving methodology, identifying its constituent components and explaining its theoretical basis for tackling problems.

Book Approximate Dynamic Programming

Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Book Dynamic Programming

    Book Details:
  • Author : Richard Bellman
  • Publisher : Courier Corporation
  • Release : 2013-04-09
  • ISBN : 0486317196
  • Pages : 388 pages

Download or read book Dynamic Programming written by Richard Bellman and published by Courier Corporation. This book was released on 2013-04-09 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to mathematical theory of multistage decision processes takes a "functional equation" approach. Topics include existence and uniqueness theorems, optimal inventory equation, bottleneck problems, multistage games, Markovian decision processes, and more. 1957 edition.

Book Dynamic Programming and Its Applications

Download or read book Dynamic Programming and Its Applications written by Martin L. Puterman and published by Academic Press. This book was released on 2014-05-10 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Programming and Its Applications provides information pertinent to the theory and application of dynamic programming. This book presents the development and future directions for dynamic programming. Organized into four parts encompassing 23 chapters, this book begins with an overview of recurrence conditions for countable state Markov decision problems, which ensure that the optimal average reward exists and satisfies the functional equation of dynamic programming. This text then provides an extensive analysis of the theory of successive approximation for Markov decision problems. Other chapters consider the computational methods for deterministic, finite horizon problems, and present a unified and insightful presentation of several foundational questions. This book discusses as well the relationship between policy iteration and Newton's method. The final chapter deals with the main factors severely limiting the application of dynamic programming in practice. This book is a valuable resource for growth theorists, economists, biologists, mathematicians, and applied management scientists.

Book Dynamic Programming

    Book Details:
  • Author : Art Lew
  • Publisher : Springer Science & Business Media
  • Release : 2006-10-09
  • ISBN : 3540370137
  • Pages : 383 pages

Download or read book Dynamic Programming written by Art Lew and published by Springer Science & Business Media. This book was released on 2006-10-09 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a practical introduction to computationally solving discrete optimization problems using dynamic programming. From the examples presented, readers should more easily be able to formulate dynamic programming solutions to their own problems of interest. We also provide and describe the design, implementation, and use of a software tool that has been used to numerically solve all of the problems presented earlier in the book.

Book Adaptive Dynamic Programming with Applications in Optimal Control

Download or read book Adaptive Dynamic Programming with Applications in Optimal Control written by Derong Liu and published by Springer. This book was released on 2017-01-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

Book Dynamic Optimization  Second Edition

Download or read book Dynamic Optimization Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Book Introduction to Stochastic Dynamic Programming

Download or read book Introduction to Stochastic Dynamic Programming written by Sheldon M. Ross and published by Academic Press. This book was released on 2014-07-10 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.

Book Adaptive Dynamic Programming  Single and Multiple Controllers

Download or read book Adaptive Dynamic Programming Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Book Combinatorial Data Analysis

Download or read book Combinatorial Data Analysis written by Lawrence Hubert and published by SIAM. This book was released on 2001-01-01 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial data analysis (CDA) refers to a wide class of methods for the study of relevant data sets in which the arrangement of a collection of objects is absolutely central. The focus of this monograph is on the identification of arrangements, which are then further restricted to where the combinatorial search is carried out by a recursive optimization process based on the general principles of dynamic programming (DP).

Book Reinforcement Learning and Dynamic Programming Using Function Approximators

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Book Reinforcement Learning and Stochastic Optimization

Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-03-15 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Book Adaptive Dynamic Programming with Applications in Optimal Control

Download or read book Adaptive Dynamic Programming with Applications in Optimal Control written by Derong Liu and published by Springer. This book was released on 2017-01-04 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

Book From Shortest Paths to Reinforcement Learning

Download or read book From Shortest Paths to Reinforcement Learning written by Paolo Brandimarte and published by Springer Nature. This book was released on 2021-01-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic programming (DP) has a relevant history as a powerful and flexible optimization principle, but has a bad reputation as a computationally impractical tool. This book fills a gap between the statement of DP principles and their actual software implementation. Using MATLAB throughout, this tutorial gently gets the reader acquainted with DP and its potential applications, offering the possibility of actual experimentation and hands-on experience. The book assumes basic familiarity with probability and optimization, and is suitable to both practitioners and graduate students in engineering, applied mathematics, management, finance and economics.

Book Stochastic Dynamic Programming and the Control of Queueing Systems

Download or read book Stochastic Dynamic Programming and the Control of Queueing Systems written by Linn I. Sennott and published by John Wiley & Sons. This book was released on 1998-09-30 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eine Zusammenstellung der Grundlagen der stochastischen dynamischen Programmierung (auch als Markov-Entscheidungsprozeß oder Markov-Ketten bekannt), deren Schwerpunkt auf der Anwendung der Queueing-Theorie liegt. Theoretische und programmtechnische Aspekte werden sinnvoll verknüpft; insgesamt neun numerische Programme zur Queueing-Steuerung werden im Text ausführlich diskutiert. Ergänzendes Material kann vom zugehörigen ftp-Server abgerufen werden. (12/98)