EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle

Download or read book Dynamic Modeling and Robust Nonlinear Control of Unmanned Quadrotor Vehicle written by Amr Mohamed Elhennawy and published by . This book was released on 2018 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: It is not easy to control a quadrotor due to its highly nonlinear dynamics, variable coupling and model uncertainties. The underactuation property of the quadrotor also poses another degree of complexity to the model due to the limited availability of control techniques that can be applied to underactuated systems. This thesis presents the development of mathematical modeling, control techniques, simulation and real-time testing on a developed quadrotor as an unmanned aerial vehicle. Modeling of the dynamic system of a quadrotor including the motor dynamics is carried out using Newton-Euler mechanics and state space representation is obtained. Using this model a second-order Sliding Mode Control (SMC) is developed as a nonlinear robust control technique. For the SMC development, quadrotor system is divided into two subsystems, One represents the fully actuated degrees of freedom and the other one represents the underactuated degrees of freedom. The aim of the proposed flight controller is to achieve asymptotic position and attitude tracking of the two subsystems by driving the tracking errors to zero to achieve the required tracking performance. Tackling of chattering problem associated with SMC is introduced. Using the developed mathematical model and the developed two control techniques as linear and nonlinear approaches: the Proportional plus Derivative (PD)and SMC, simulation testing is conducted with and without the presence of external disturbances representing weight variation. Multiple simulations testing are performed to ensure the adequacy of the proposed control techniques using MATLAB and Simulink. Detailed discussion on the results of each control technique and comparison are presented with elaborate consideration of the robustness against weight variation. The simulation results demonstrate the ability of the SMC to drive the vehicle to stability and achieve the desired performance characteristics. . Finally, hardware design of a quadrotor has been developed and implemented with considerations on the hardware challenges are presented. Results of real-time ght tests using the two developed control techniques are presented and compared with that of the simulation results and it shows reliable performance of the nonlinear robust SMC controller. Flight tests results came consistent with the simulation results in terms of tracking performance, robustness and actuators e orts. Hardships in the implementation are mentioned and recommendations and future work are proposed.

Book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Download or read book Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle written by Moussa Labbadi and published by Springer Nature. This book was released on 2021-09-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Book Dynamic Modeling and Control of a Quadrotor Using Linear and Nonlinear Approaches

Download or read book Dynamic Modeling and Control of a Quadrotor Using Linear and Nonlinear Approaches written by Heba talla Mohamed Nabil Elkholy and published by . This book was released on 2014 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: With the huge advancements in miniature sensors, actuators and processors depending mainly on the Micro and Nano-Electro-Mechanical-Systems (MEMS/NEMS), many researches are now focusing on developing miniature flying vehicles to be used in both research and commercial applications. This thesis work presents a detailed mathematical model for a Vertical Takeo ff and Landing (VTOL) type Unmanned Aerial Vehicle(UAV) known as the quadrotor. The nonlinear dynamic model of the quadrotor is formulated using the Newton-Euler method, the formulated model is detailed including aerodynamic effects and rotor dynamics that are omitted in many literature. The motion of the quadrotor can be divided into two subsystems; a rotational subsystem (attitude and heading) and a translational subsystem (altitude and x and y motion). Although the quadrotor is a 6 DOF underactuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is underactuated. The derivation of the mathematical model is followed by the development of four control approaches to control the altitude, attitude, heading and position of the quadrotor in space. The fi rst approach is based on the linear Proportional-Derivative-Integral (PID) controller. The second control approach is based on the nonlinear Sliding Mode Controller (SMC). The third developed controller is a nonlinear Backstepping controller while the fourth is a Gain Scheduling based PID controller. The parameters and gains of the forementioned controllers were tuned using Genetic Algorithm (GA) technique to improve the systems dynamic response. Simulation based experiments were conducted to evaluate and compare the performance of the four developed control techniques in terms of dynamic performance, stability and the effect of possible disturbances.

Book Dynamic Modeling  Fuzzy Control and Stabilization of Quadrotor Vehicle

Download or read book Dynamic Modeling Fuzzy Control and Stabilization of Quadrotor Vehicle written by Mohamed Elkhatib and published by . This book was released on 2017-01-26 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Control of Vehicles and Robots

Download or read book Nonlinear Control of Vehicles and Robots written by Béla Lantos and published by Springer. This book was released on 2011-04-08 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. The main classes of nonlinear systems and stability methods are summarized and basic nonlinear control methods, useful in manipulator and vehicle control, are presented. Formation control of ground robots and ships is discussed. The book also deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated. Theoretical and practical aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors as part of the control system.

Book Flight Dynamics  Simulation  and Control

Download or read book Flight Dynamics Simulation and Control written by Ranjan Vepa and published by CRC Press. This book was released on 2023-04-11 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft explains the basics of non-linear aircraft dynamics and the principles of control-configured aircraft design, as applied to rigid and flexible aircraft, drones, and unmanned aerial vehicles (UAVs). Addressing the details of dynamic modeling, simulation, and control in a selection of aircraft, the book explores key concepts associated with control-configured elastic aircraft. It also covers the conventional dynamics of rigid aircraft and examines the use of linear and non-linear model-based techniques and their applications to flight control. This second edition features a new chapter on the dynamics and control principles of drones and UAVs, aiding in the design of newer aircraft with a combination of propulsive and aerodynamic control surfaces. In addition, the book includes new sections, approximately 20 problems per chapter, examples, simulator exercises, and case studies to enhance and reinforce student understanding. The book is intended for senior undergraduate and graduate mechanical and aerospace engineering students taking Flight Dynamics and Flight Control courses. Instructors will be able to utilize an updated Solutions Manual and figure slides for their course.

Book Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties

Download or read book Nonlinear Control of Fixed Wing UAVs with Time Varying and Unstructured Uncertainties written by Michail G. Michailidis and published by Springer Nature. This book was released on 2020-02-21 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.

Book Flight Formation Control

Download or read book Flight Formation Control written by Josep M. Guerrero and published by John Wiley & Sons. This book was released on 2012-12-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade the development and control of Unmanned Aerial Vehicles (UAVs) has attracted a lot of interest. Both researchers and companies have a growing interest in improving this type of vehicle given their many civilian and military applications. This book presents the state of the art in the area of UAV Flight Formation. The coordination and robust consensus approaches are presented in detail as well as formation flight control strategies which are validated in experimental platforms. It aims at helping students and academics alike to better understand what coordination and flight formation control can make possible. Several novel methods are presented: - controllability and observability of multi-agent systems; - robust consensus; - flight formation control; - stability of formations over noisy networks; which generate solutions of guaranteed performance for UAV Flight Formation. Contents 1. Introduction, J.A. Guerrero. 2. Theoretical Preliminaries, J.A. Guerrero. 3. Multiagent Coordination Strategies, J.A. Guerrero, R. Lozano, M.W. Spong, N. Chopra. 4. Robust Control Design for Multiagent Systems with Parametric Uncertainty, J.A. Guerrero, G. Romero. 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs, Y.-C. Liu, N. Chopra. 6. Modeling and Control of Mini UAV, G. Flores Colunga, J.A. Guerrero, J. Escareño, R. Lozano. 7. Flight Formation Control Strategies for Mini UAVs, J.A. Guerrero. 8. Formation Based on Potential Functions, L. García, A. Dzul. 9. Quadrotor Vision-Based Control, J.E. Gomez-Balderas, J.A. Guerrero, S. SALAZAR, R. Lozano, P. Castillo. 10. Toward Vision-Based Coordination of Quadrotor Platoons, L.R. García Carrillo, J.A. Guerrero, R. Lozano. 11. Optimal Guidance for Rotorcraft Platoon Formation Flying in Wind Fields, J.A. Guerrero, Y. Bestaoui, R. Lozano. 12. Impact of Wireless Medium Access Protocol on the Quadrotor Formation Control, J.A. Guerrero, Y. Challal, P. Castillo. 13. MAC Protocol for Wireless Communications, A. Mendez, M. Panduro, O. Elizarraras, D. Covarrubias. 14. Optimization of a Scannable Pattern for Bidimensional Antenna Arrays to Provide Maximum Performance, A. Reyna, M.A. Panduro, A. Mendez.

Book Nonlinear Control of Robots and Unmanned Aerial Vehicles

Download or read book Nonlinear Control of Robots and Unmanned Aerial Vehicles written by Ranjan Vepa and published by CRC Press. This book was released on 2016-10-14 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Control of Robots and Unmanned Aerial Vehicles: An Integrated Approach presents control and regulation methods that rely upon feedback linearization techniques. Both robot manipulators and UAVs employ operating regimes with large magnitudes of state and control variables, making such an approach vital for their control systems design. Numerous application examples are included to facilitate the art of nonlinear control system design, for both robotic systems and UAVs, in a single unified framework. MATLAB® and Simulink® are integrated to demonstrate the importance of computational methods and systems simulation in this process.

Book Adaptive Dynamic Programming  Single and Multiple Controllers

Download or read book Adaptive Dynamic Programming Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Book Robust and Adaptive Control Methods for Small Aerial Vehicles

Download or read book Robust and Adaptive Control Methods for Small Aerial Vehicles written by Prasenjit Mukherjee and published by . This book was released on 2012 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in sensor and microcomputer technology and in control and aeroydynamics theories has made small unmanned aerial vehicles a reality. The small size, low cost and manoueverbility of these systems has positioned them to be potential solutions in a large class of applications. However, the small size of these vehicles pose significant challenges. The small sensors used on these systems are much noisier than their larger counterparts. The compact structure of these vehicles also makes them more vulnerable to environmental effects. This work develops several different control strategies for two sUAV platforms and provides the rationale for judging each of the controllers based on a derivation of the dynamics, simulation studies and experimental results where possible. First, the coaxial helicopter platform is considered. This sUAV's dual rotor system (along with its stabilizer bar technology) provides the ideal platform for safe, stable flight in a compact form factor. However, the inherent stability of the vehicle is achieved at the cost of weaker control authority and therefore an inability to achieve aggressive trajectories especially when faced with heavy wind disturbances. Three different linear control strategies are derived for this platform. PID, LQR and H[infin] methods are tested in simulation studies. While the PID method is simple and intuitive, the LQR method is better at handling the decoupling required in the system. However the frequency domain design of the H[infin] control method is better at suppressing disturbances and tracking more aggressive trajectories. The dynamics of the quadrotor are much faster than those of the coaxial helicopter. In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differences between each of the rotors creates moments in the roll, pitch and yaw directions. This system greatly simplifies the mechanical complexity of the UAV, making quadrotors cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work. Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not inherently damped around hover. As such, the focus of the controller development is on using nonlinear techniques. Linear quadratic regulation methods are derived and shown to be inadequate when used in zones moderately outside hover. Within nonlinear methods, feedback linearization techniques are developed for the quadrotor using an inner/outer loop decoupling structure that avoids more complex variants of the feedback linearization methodology. Most nonlinear control methods (including feedback linearization) assume perfect knowledge of vehicle parameters. In this regard, simulation studies show that when this assumption is violated the results of the flight significantly deteriorate for quadrotors flying using the feedback linearization method. With this in mind, an adaptation law is devised around the nonlinear control method that actively modifies the plant parameters in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory requirements the parameters are able to adapt to the correct values (as verified by simulation studies). It can also adapt to changing parameters in flight to ensure that vehicle stability and controller performance is not compromised. However, the direct adaptive control method devised in this work has the added benefit of being able to modify plant parameters to suppress the effects of external disturbances as well. This is clearly shown when wind disturbances are applied to the quadrotor simulations. Finally, the nonlinear quadrotor controllers devised above are tested on a custom built quadrotor and autopilot platform. While the custom quadrotor is able to fly using the standard control methods, the specific controllers devised here are tested on a test bench that constrains the movement of the vehicle. The results of the tests show that the controller is able to sufficiently change the necessary parameter to ensure effective tracking in the presence of unmodelled disturbances and measurement error.

Book Unmanned Aerial Systems

Download or read book Unmanned Aerial Systems written by Anis Koubaa and published by Academic Press. This book was released on 2021-01-21 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. - Covers some of the most innovative approaches to drones - Provides the latest state-of-the-art research and development surrounding unmanned aerial systems - Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area

Book Nonlinear Kalman Filter for Multi Sensor Navigation of Unmanned Aerial Vehicles

Download or read book Nonlinear Kalman Filter for Multi Sensor Navigation of Unmanned Aerial Vehicles written by Jean-Philippe Condomines and published by Elsevier. This book was released on 2018-11-14 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Kalman Filter for Multi-Sensor Navigation of Unmanned Aerial Vehicles covers state estimation development approaches for Mini-UAV. The book focuses on Kalman filtering technics for UAV design, proposing a new design methodology and case study related to inertial navigation systems for drones. Both simulation and real experiment results are presented, thus showing new and promising perspectives. - Gives a state estimation development approach for mini-UAVs - Explains Kalman filtering techniques - Introduce a new design method for unmanned aerial vehicles - Introduce cases relating to the inertial navigation system of drones

Book Robust Formation Control for Multiple Unmanned Aerial Vehicles

Download or read book Robust Formation Control for Multiple Unmanned Aerial Vehicles written by Hao Liu and published by CRC Press. This book was released on 2022-12-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Book Adaptive Hybrid Control of Quadrotor Drones

Download or read book Adaptive Hybrid Control of Quadrotor Drones written by Nihal Dalwadi and published by Springer Nature. This book was released on 2023-03-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.

Book Inertial Quasi Velocity Based Controllers for a Class of Vehicles

Download or read book Inertial Quasi Velocity Based Controllers for a Class of Vehicles written by Przemyslaw Herman and published by Springer. This book was released on 2023-02-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely overview of nonlinear control methods applied to a set of vehicles and their applications to study vehicle dynamics. The first part on the book presents the mathematical models used for describing motion of three class of vehicles such as underwater vehicles, hovercrafts and airships. In turn, each model is expressed in terms of Inertial Quasi-Velocities. Various control strategies from the literature, including model-free ones, are then analyzed. The second part and core of the book guides readers to developing model-based control algorithms using Inertial Quasi-Velocities. Both non-adaptive and adaptive versions are covered. Each controller is validated through simulation tests, which are reported in detail. In turn, this part shows how to use the controllers to gain information about vehicle dynamics, thus describing an important relationship between the dynamics of the moving object and its motion control. The effects of mechanical couplings between variables describing vehicle motion due to inertial forces are also discussed. All in all, this book offers a timely guide and extensive information on nonlinear control schemes for unmanned marine and aerial vehicles. It covers specifically the simulation tests and is therefore meant as a starting point for engineers and researchers that would like to verify experimentally the suitability of the proposed models in real vehicles. Further, it also supports advanced-level students and educators in their courses on vehicle dynamics, control engineering and robotics.

Book Nonlinear and Fault tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle

Download or read book Nonlinear and Fault tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle written by Tong Li and published by . This book was released on 2011 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Vehicles (UAVs) have become more and more popular, and how to control them has become crucial. Although there are many different control methods that can be applied to the control of UAVs, nonlinear control techniques are more practical since the nonlinear features of most UAVs. In this thesis, as the first main contribution, three widely used nonlinear control techniques including Feedback Linearization Control (FLC), Sliding Mode Control (SMC), and Backstepping Control (BSC) are discussed, investigated, and designed in details and flight-tested on a unique quadrotor UAV (Qball-X4) test-bed available at the Networked Autonomous Vehicles (NAV) Lab in Concordia University. Each of these three control algorithms has its own features. The advantages and disadvantages are revealed through both simulation and experimental tests. Sliding mode control is well known for its capability of handling uncertainty, and is expected to be a robust controller on Qball-X4 UAV. Feedback linearization control and backstepping control are considered a bit weaker than sliding mode control. A comparison of these three controllers is carried out in both theoretical analysis and experimental results under same fault-free flight conditions. Testing results and comparison show the different features of different control methods, and provide a view on how to choose controller under a specific condition. Besides, safety and reliability of UAVs have been and will always be a critical issue in the aviation industry. Fault-Tolerant Control (FTC) has played an extremely important role towards UAVs' safety and reliability and the safety of group people if an unexpected crash occurred due to faults/damages of UAVs. Therefore, FTC has been a very active and quickly growing research and development field for UAVs and other safety-critical systems. Based on the use of sliding mode control technique, referred to as Fault-Tolerant SMC (FT-SMC) have been investigated, implemented, flight-tested and compared in the Qball-X4 test-bed and also simulation environment in both passive and active framework of FTC in the presence of different actuator faults/damages, as the second main contribution of this thesis work.