EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamic Mission Planning for Unmanned Aerial Vehicles

Download or read book Dynamic Mission Planning for Unmanned Aerial Vehicles written by Samantha Raye Rennu and published by . This book was released on 2020 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this thesis is to produce a closed-loop feedback mission planning tool that allows for the operator to control multiple Unmanned Aerial Vehicles (UAV) within a mission. Different styles of UAVs and mission planners that are available on the market were evaluated and selected for their cost, size, ability to customize, and fit for mission work. It was determined that commercially available mission planners do not provide the level of automation required, such as allowing for different algorithms for assigning UAV tasks and for planning UAV flight paths within a mission. Comparisons were made between different algorithms for path planning and tasking. From these comparisons, a bio-inspired machine-learning algorithm, Genetic Algorithm (GA), was chosen for assigning tasks to UAVs and Dubins path was chosen for modeling UAV flight paths within the mission simulation. Since market mission planners didn't allow for control of multiple UAVs, or wouldn't allow for the operator to add algorithms to increase usability and automation of the program, it was decided to create a Graphic User Interface (GUI) that would allow the operator to customize UAVs and the mission scenario. A test mission scenario was then designed, which included 9 Points of Interest (POI), 1 to 3 Targets of Interest (TOI), 3 to 5 UAVs, as well as simulation options that modeled failure of a task or a UAV crash. Operator feedback was incorporated into the simulation by allowing the operator to determine a course of action if a failure occurred, such as reprogramming the other UAVs to complete the tasks left by the crashed UAV or reassessing a failed task. Overall mission times decreased for reprogramming the UAVs versus running a separate mission to complete any tasks left by the crashed UAV. Additional code was added to the GA and Dubins path to increase speed without decreasing solution fitness.

Book Dynamic Mission Planning for Communication Control in Multiple Unmanned Aircraft Teams

Download or read book Dynamic Mission Planning for Communication Control in Multiple Unmanned Aircraft Teams written by Andrew Normand Kopeikin and published by . This book was released on 2012 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: As autonomous technologies continue to progress, teams of multiple unmanned aerial vehicles will play an increasingly important role in civilian and military applications. A multi-UAV system relies on communications to operate. Failure to communicate remotely sensed mission data to the base may render the system ineffective, and the inability to exchange command and control messages can lead to system failures. This thesis presents a unique method to control communications through distributed mission planning to engage under-utilized UAVs to serve as communication relays and to ensure that the network supports mission tasks. The distributed algorithm uses task assignment information, including task location and proposed execution time, to predict the network topology and plan support using relays. By explicitly coupling task assignment and relay creation processes the team is able to optimize the use of agents to address the needs of dynamic complex missions. The framework is designed to consider realistic network communication dynamics including path loss, stochastic fading, and information routing. The planning strategy is shown to ensure agents support both data-rate and interconnectivity bit-error- rate requirements during task execution. In addition, a method is provided for UAVs to estimate the network performance during times of uncertainty, adjust their plans to acceptable levels of risk, and adapt the planning behavior to changes in the communication environment. The system performance is verified through multiple experiments conducted in simulation. Finally, the work developed is implemented in outdoor flight testing with a team of up to four UAVs to demonstrate real-time capability and robustness to imperfections in the environment. The results validate the proposed framework, but highlight some of the challenges these systems face when operating in outdoor uncontrolled environments.

Book Mission Planning for Unmanned Aerial Vehicles

Download or read book Mission Planning for Unmanned Aerial Vehicles written by Armin Fügenschuh and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cooperative Control  Models  Applications and Algorithms

Download or read book Cooperative Control Models Applications and Algorithms written by Sergiy Butenko and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decades, considerable progress has been observed in all aspects regarding the study of cooperative systems including modeling of cooperative systems, resource allocation, discrete event driven dynamical control, continuous and hybrid dynamical control, and theory of the interaction of information, control, and hierarchy. Solution methods have been proposed using control and optimization approaches, emergent rule based techniques, game theoretic and team theoretic approaches. Measures of performance have been suggested that include the effects of hierarchies and information structures on solutions, performance bounds, concepts of convergence and stability, and problem complexity. These and other topics were discusses at the Second Annual Conference on Cooperative Control and Optimization in Gainesville, Florida. Refereed papers written by selected conference participants from the conference are gathered in this volume, which presents problem models, theoretical results, and algorithms for various aspects of cooperative control. Audience: The book is addressed to faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.

Book Glowworm Swarm Optimization

Download or read book Glowworm Swarm Optimization written by Krishnanand N. Kaipa and published by Springer. This book was released on 2017-01-10 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intelligence and working on these topics.

Book Routing Unmanned Aerial Vehicles  Uavs  to Co Optimize Mission Effectiveness and Network Performance with Dynamic Programming

Download or read book Routing Unmanned Aerial Vehicles Uavs to Co Optimize Mission Effectiveness and Network Performance with Dynamic Programming written by Air Force Air Force Institute of Technology and published by CreateSpace. This book was released on 2014-11-05 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: In support of the Air Force Research Laboratory's (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities.

Book Cooperative Path Planning of Unmanned Aerial Vehicles

Download or read book Cooperative Path Planning of Unmanned Aerial Vehicles written by Antonios Tsourdos and published by John Wiley & Sons. This book was released on 2010-11-09 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in the area of cooperative systems, cooperative control and optimization particularly in the aerospace industry.

Book A Dynamic Mission Replanning Testbed for Supervisory Control of Multiple Unmanned Aerial Vehicles

Download or read book A Dynamic Mission Replanning Testbed for Supervisory Control of Multiple Unmanned Aerial Vehicles written by and published by . This book was released on 2006 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: As unmanned aerial vehicles (UAVs) increase in autonomy, operators will be increasing their span of control. Most UAV systems require two or more operators to fly and operate payloads, but systems are being developed with the concept of a single operator monitoring multiple UAVs. This supervisory control of multiple UAVs raises many issues concerning the balance of system autonomy with human interaction to keep the operator in-the-loop. Testbeds are needed that specifically address multi-UAV supervisory control, replicating the complex automation algorithms and allowing operator initiation and inspection into these systems. There is currently an effort underway to develop a dynamic mission replanning testbed for human factors research on supervisory control of multiple UAVs. This testbed utilizes Air Force certified autorouting study is being performed with this still developing testbed and results will be presented.

Book Multi agent UAV Planning Using Belief Space Hierarchical Planning in the Now

Download or read book Multi agent UAV Planning Using Belief Space Hierarchical Planning in the Now written by Caris Moses and published by . This book was released on 2015 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning long duration missions for unmanned aerial vehicles (UAVs) in dynamic environments has proven to be a very challenging problem. Tactical UAVs must be able to reason about how to best accomplish mission objectives in the face of evolving mission conditions. Examples of UAV missions consist of executing multiple tasks such as: locating, identifying, and prosecuting targets; avoiding dynamic (i.e. pop-up) threats; geometric path planning with kinematic and dynamic constraints; and/or acting as a communication relay. The resulting planning problem is then one over a large and stochastic state space due to the size of the mission environment and the number of objects within that environment. The world state is also only partially observable due to sensor noise, and requires us to plan in the belief space, which is a probability distribution over all possible states. Some a priori contextual knowledge, like target and threat locations, is available via satellite imagery based maps. However, it is possible this will be "old" data by execution time. This makes classic approaches to a priori task, or symbolic, planning a poor choice of tool. In addition, task planners traditionally do not have methods for handling geometric planning problems as they focus on high level tasks. However, modern belief space geometric planning tools become intractable for large state spaces, such as ours. Recent tools in the domain of robotic manipulation have approached this problem by combining symbolic and geometric planning paradigms. One in particular, Hierarchical Planning-in-the-Now in belief space (BHPN) is a hierarchical planning technique that tightly couples geometric motion planning in belief spaces with symbolic task planning, providing a method for turning large-scale intractable belief space problems into smaller tractable ones. In addition to all of the complexities associated with UAV mission planning discussed above, it is also common for multiple UAVs to work as a team to accomplish a mission objective. This is due to the fact that some vehicles may have certain sensor capabilities that others lack. It could also simply be to spread out and achieve sufficient coverage of an environment. We take a decentralized planning approach to enabling UAV teaming. BHPN provides a flexible method of implementing this loosely-coupled multi-agent planning effort.

Book Unmanned Aerial Systems

Download or read book Unmanned Aerial Systems written by Anis Koubaa and published by Academic Press. This book was released on 2021-01-21 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. - Covers some of the most innovative approaches to drones - Provides the latest state-of-the-art research and development surrounding unmanned aerial systems - Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area

Book Robust Multi unmanned Aerial Vehicles Planning in Dynamic and Uncertain Environments

Download or read book Robust Multi unmanned Aerial Vehicles Planning in Dynamic and Uncertain Environments written by Chung Tin and published by . This book was released on 2004 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future unmanned aerial vehicles (UAVs) are expected to operate with higher level of autonomy to execute very complex military and civilian applications. New methods in planning and execution are required to coordinate these vehicles in real-time to ensure maximal efficiency of the team activities. These algorithms must be fast to enable rapid replanning in a dynamic environment. The planner must also be robust to uncertainty in the situational awareness. This thesis investigates the impact of information uncertainty and environmental changes to the task assignment and path planning algorithms. Several new techniques are presented that both speed up and embed robustness into previously published algorithms. The first is an incremental algorithm that significantly reduces the time required to update the cost map used in the task assignment when small changes occur in a complex environment. The second introduces a new robust shortest path algorithm that accounts for uncertainty in the arc costs. The algorithm is computational tractable and is shown to yield performance and robustness that are comparable to more sophisticated algorithms that are not suitable for real-time implementation. Experimental results are presented using this technique on a rover testbed. This thesis also extends a UAV search algorithm to include moving targets in the environment. This new algorithm coordinates a team of UAVs to search an unknown environment while balancing the need to track moving targets. These three improvements have had a big impact because they modify the Receding Horizon Mixed-Integer Linear Programming (RH-MILP) control hierarchy to handle uncertainty and properly react to rapid changes in the environment. Hence, these improvements enable the RH-MILP controller to be implemented in more realistic scenarios.

Book Unmanned Aerial Vehicles Mission Planning Under Uncertainty

Download or read book Unmanned Aerial Vehicles Mission Planning Under Uncertainty written by Philemon Sakamoto and published by . This book was released on 2006 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: (cont.) In this research, we develop a UAV Mission Planner that couples the scheduling of tasks with the assignment of these tasks to UAVs, while maintaining the characteristics of longevity and efficiency in its plans. The planner is formulated as a Mixed Integer Program (MIP) that incorporates the Robust Optimization technique proposed by Bertsimas and Sim [12].

Book Human automation Collaborative Rapidly Exploring Random Tree for Unmanned Aerial Vehicle Mission Path Planning

Download or read book Human automation Collaborative Rapidly Exploring Random Tree for Unmanned Aerial Vehicle Mission Path Planning written by Caves Corral Caves and published by . This book was released on 2010 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic and complex environments. Human-automation collaboration will be required in order to distribute the increased mission workload that will naturally arise from these interactions. One of the areas of interest in these missions is the supervision of multiple UAVs by a single operator, and it is critical to understand how individual operators will be able to supervise a team of vehicles performing semi-autonomous path planning while avoiding no-fly zones and replanning on the fly. Unfortunately, real time planning and replanning can be a computationally burdensome task, particularly in the high density obstacle environments that are envisioned in future urban applications. Recent work has proposed the use of a randomized algorithm known as the Rapidly exploring Random Tree (RRT) algorithm for path planning. While capable of finding feasible solutions quickly, it is unclear how well a human operator will be able to supervise a team of UAVs that are planning based on such a randomized algorithm, particularly due to the unpredictable nature of the generated paths. This thesis presents the results of an experiment that tested a modification of the RRT algorithm for use in human supervisory control of UAV missions. The experiment tested how human operators behaved and performed when given different ways of interacting with an RRT to supervise UAV missions in environments with dynamic obstacle fields of different densities. The experimental results demonstrated that some variants of the RRT increase subjective workload, but did not provide conclusive evidence for whether using an RRT algorithm for path planning is better than manual path planning in terms of overall mission times. Analysis of the data and behavioral observations hint at directions for possible future work.

Book Over 40 Publications   Studies Combined  UAS   UAV   Drone Swarm Technology Research

Download or read book Over 40 Publications Studies Combined UAS UAV Drone Swarm Technology Research written by and published by Jeffrey Frank Jones. This book was released on with total page 3840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles

Book Intelligent Autonomy of UAVs

Download or read book Intelligent Autonomy of UAVs written by Yasmina Bestaoui Sebbane and published by CRC Press. This book was released on 2018-03-14 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Autonomy of UAVs: Advanced Missions and Future Use provides an approach to the formulation of the fundamental task typical to any mission and provides guidelines of how this task can be solved by different generic robotic problems. As such, this book aims to provide a systems engineering approach to UAV projects, discovering the real problems that need to be resolved independently of the application. After an introduction to the rapidly evolving field of aerial robotics, the book presents topics such as autonomy, mission analysis, human-UAV teams, homogeneous and heterogeneous UAV teams, and finally, UAV-UGV teams. It then covers generic robotic problems such as orienteering and coverage. The book next introduces deployment, patrolling, and foraging, while the last part of the book tackles an important application: aerial search, tracking, and surveillance. This book is meant for both scientists and practitioners. For practitioners, it presents existing solutions that are categorized according to various missions: surveillance and reconnaissance, 3D mapping, urban monitoring, precision agriculture, forestry, disaster assessment and monitoring, security, industrial plant inspection, etc. For scientists, it provides an overview of generic robotic problems such as coverage and orienteering; deployment, patrolling and foraging; search, tracking, and surveillance. The design and analysis of algorithms raise a unique combination of questions from many fields, including robotics, operational research, control theory, and computer science.

Book Human Rapidly Exploring Random Tree Collaboration in UAV Mission Path Planning

Download or read book Human Rapidly Exploring Random Tree Collaboration in UAV Mission Path Planning written by Alina Griner and published by . This book was released on 2012 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unmanned Aerial Vehicles (UAVs) are used for a variety of military and commercial purposes, including surveillance, combat, and search and rescue. Current research is looking into combining automation with human supervision to facilitate various lower-level cognitive tasks, such as path planning, in order to allow the human operator to focus on high-level mission strategy. Path planning in the presence of dynamic constraints necessitates extensive real-time replanning, which is a computationally intensive task, especially when there is a high density of obstacles or no-fly zones. Recently common choices of path finding algorithms have used variations of a randomized algorithm called Rapidly exploring Random Tree (RRT). This randomized sampling algorithm finds fairly short feasible paths, and it finds them efficiently, however human operators supervising UAV missions may have difficulty collaborating with a randomized algorithm. This thesis presents the experimental results of the second round in an iterative interface design project analyzing human collaboration with a RRT algorithm. In the experiment, operators completed simulated UAV missions in three modes with varying methods of interaction with the RRT algorithm. The collected data included performance and behavioral metrics, as well as subjective feedback. The results demonstrated a clear operator preference for certain methods of interaction with RRT over others. The mode of interaction that allowed these preferred methods had similar results in most metrics to the manual planning mode; the mode with the least preferred methods had significantly worse results. The outcome of the experiment did not conclusively answer the question of whether using RRT for path planning results in lower mission completion times or lower cognitive load on the operator, however the analysis of the data and observations of operator behavior lead to questions for future research.

Book Online Path Planning and Control Solution for a Coordinated Attack of Multiple Unmanned Aerial Vehicles in a Dynamic Environment

Download or read book Online Path Planning and Control Solution for a Coordinated Attack of Multiple Unmanned Aerial Vehicles in a Dynamic Environment written by Juan E. Vega-Nevárez and published by . This book was released on 2012 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of the unmanned aerial vehicle (UAV) has significantly expanded in the military sector during the last decades mainly due to their cost effectiveness and their ability to eliminate the human life risk. Current UAV technology supports a variety of missions and extensive research and development is being performed to further expand its capabilities. One particular field of interest is the area of the low cost expendable UAV since its small price tag makes it an attractive solution for target suppression. A swarm of these low cost UAVs can be utilized as guided munitions or kamikaze UAVs to attack multiple targets simultaneously. The focus of this thesis is the development of a cooperative online path planning algorithm that coordinates the trajectories of these UAVs to achieve a simultaneous arrival to their dynamic targets. A nonlinear autopilot design based on the dynamic inversion technique is also presented which stabilizes the dynamics of the UAV in its entire operating envelope. A nonlinear high fidelity six degrees of freedom model of a fixed wing aircraft was developed as well that acted as the main test platform to verify the performance of the presented algorithms.